Abstract:
This disclosure relates to techniques for providing a multipath transmission control protocol proxy in a cellular network. A wireless device may establish a wireless link with a cellular network. The wireless device may provide an indication that the wireless device is multipath transmission control protocol (MPTCP) capable to a core network entity of the cellular network. The wireless device may receive MPTCP proxy information for a MPTCP proxy comprised in the cellular network from the core network entity. The MPTCP proxy information may include MPTCP server IP address and port information. The wireless device may establish a first MPTCP flow with the MPTCP proxy comprised in the cellular network via the wireless link.
Abstract:
Quality of service may be enhanced for high priority traffic. A UE may communicate within a packet switched system, e.g., an LTE network. The UE may use a first or default bearer for signaling messages of high priority services and a second bearer for messages of low priority services. For example, the first bearer may have a quality of service class identifier (QCI) value of 5 while the second bearer may have a QCI value other than 5, (e.g., 6-9). The first bearer may be used for signaling messages associated with voice over IP, video over IP, and/or SMS over IP, as desired. The second bearer may be used for messages (e.g., signaling messages) associated with other, lower priority services. For example, the second bearer may be used for presence messages or instant messages or other lower priority messages.
Abstract:
Techniques are disclosed relating to a mobile device that communicates over short-range networks and long-range networks. In various embodiments, a mobile device includes one or more radios configured to communicate using a plurality of radio access technologies (RATs) including a cellular RAT and a short-range RAT. The mobile device may establish a first connection and a second connection with a network such that the first connection uses the short-range RAT and the second connection uses the cellular RAT. The mobile may collect information about the second connection and communicate the collected information to the network over the first connection. In some embodiments, the information includes a base station identifier, an MCC, an MNC, the cellular RAT and a cellular information age indicating the time since the information about the second connection was collected by the UE.
Abstract:
Apparatus and methods to support IP flow mobility (IFOM) via multiple wireless accesses in a wireless device are disclosed. The wireless device initiates network-based IFOM (NB-IFOM) to establish and manage IP flows. Support for NB-IFOM is negotiated during initial attach procedures to either or both wireless accesses and by using packet data network (PDN) connectivity procedures. The wireless device sends routing rules including priorities to apply to both existing and future IP flows or to future IP flows only. The wireless device requests to move IP flows from a source access to a target access. When a new wireless access is added to an existing PDN connection, an identical IP address for the wireless device is allocated as used for the existing PDN connection. The network establishes a GPRS tunneling protocol (GTP) tunnel for the new wireless access while maintaining a previously established GTP tunnel for the existing wireless access.
Abstract:
This disclosure relates to reducing or mitigating no-service delays for LTE capable wireless devices which do not have permission to access one or more LTE networks. According to some embodiments, a MME of a first PLMN may receive an LTE NAS request corresponding to a tracking area from a wireless device. The MME may determine to reject the request, and may send a rejection response to the request indicating that access to the first PLMN in the tracking area according to LTE is not available to the wireless device. The rejection response may further include extended cause information relating to whether or not the wireless device is permitted to access the first PLMN in other tracking areas according to LTE.
Abstract:
Performing a circuit-switched fallback (CSFB) call with improved reliability. A request to establish a CSFB call may be received by a UE that is currently in a pool overlap area. The network resource controller, or the base station, transmits information to the UE which indicates the pools in which neighboring cells are operating. The UE uses this information to select a circuit-switched cell on which to operate for the CSFB operation, wherein the selected CS cell is in the same pool area as the current pool area. This prevents the UE from inadvertently camping on a CS cell in a different pool area, which could cause call failure on some networks. The information provided by the base station may comprise a pool area id, or may comprise mapping relation information that is useable by the UE to determine the current pool area.
Abstract:
Mobile devices, base stations, and/or relay stations may implement CSFB (circuit switched fallback) operations by using RRC (radio resource control) connection release and/or handover procedures. If the CSFB RAT (radio access technology) target is not well configured, the UE may be informed and provisioned by the NW during a CSFB procedure with the information to return to LTE. Having this information, the UE may perform an autonomous search of LTE cells after the CSFB call release, speeding up return to LTE. To minimize potential call failures during CSFB, the UE may autonomously perform an additional cell search, in particular a search for cells on a RAT different from the initial target RAT. This creates an opportunity to prevent call failure of CSFB calls that would otherwise fail. The UE may be provisioned during the CSFB procedure with information to perform the additional cell search, should such a search be necessary.
Abstract:
An apparatus, system, and method for performing handover of a mobile station (MS) between a base station (BS) and an access point (AP) are described. In one embodiment, the MS may receive one or more threshold values for reporting measurements to the BS. The MS may convert the threshold values to device-specific threshold values. The MS may determine one or more network quality values associated with the AP. The MS may compare the network quality values to the device-specific threshold values. In response to the network quality values exceeding the device-specific threshold values, the MS may convert the network quality values to calibrated network quality values. The MS may provide the calibrated network quality values. The MS may perform handover from the BS to the AP based on providing the calibrated network quality values to the BS.
Abstract:
Several techniques using a network slice quota (NSQ) management function provide dynamic adjustment in order to meet the limitation of data rate per network slice in the uplink and downlink wireless connections in a wireless network. In one technique, when the limit is reached, the session aggregated maximum bit rates (AMBR) per subscription level is adjusted in proportionate ratio of the maximum bit rate per subscription level per user equipment (UE). In another technique, when the limit is reached, there is a proportionate equivalent increment and decrement of session AMBR based on usage patterns of the subscription levels. In a further technique, when the limit is reached, there is a proportionate equivalent increment and decrement of slice resources based on usage patterns. In yet another technique, a quota update is attempted using the Unified Data Repository (UDR).
Abstract:
A processor comprising memory storing instructions that, when executed, cause the processor to establish a fifth generation (5G) connection associated with a next-generation node-B (gNB) and an access and mobility function (AMF). Additionally, the processor can transmit, based at least in part on a loss of the 5G connection, a connection request message to an enhanced node-B (eNB) and receive, from the eNB, a connection reject message. The connection reject message can include an indication associated with a timer expiry value and the processor can start a timer in accordance with the timer expiry value. The processor can further determine a period of unavailability of a user equipment (UE), transmit a request message indicating the period of unavailability to the AMF, and receive a response message from the AMF.