DIGITAL IMAGE INPAINTING UTILIZING A CASCADED MODULATION INPAINTING NEURAL NETWORK

    公开(公告)号:US20230360180A1

    公开(公告)日:2023-11-09

    申请号:US17661985

    申请日:2022-05-04

    Applicant: Adobe Inc.

    CPC classification number: G06T5/005 G06T3/4046 G06V10/40 G06T2207/20084

    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media that generate inpainted digital images utilizing a cascaded modulation inpainting neural network. For example, the disclosed systems utilize a cascaded modulation inpainting neural network that includes cascaded modulation decoder layers. For example, in one or more decoder layers, the disclosed systems start with global code modulation that captures the global-range image structures followed by an additional modulation that refines the global predictions. Accordingly, in one or more implementations, the image inpainting system provides a mechanism to correct distorted local details. Furthermore, in one or more implementations, the image inpainting system leverages fast Fourier convolutions block within different resolution layers of the encoder architecture to expand the receptive field of the encoder and to allow the network encoder to better capture global structure.

    RECOMMENDING OBJECTS FOR IMAGE COMPOSITION USING A GEOMETRY-AND-LIGHTING AWARE NEURAL NETWORK

    公开(公告)号:US20230325991A1

    公开(公告)日:2023-10-12

    申请号:US17658770

    申请日:2022-04-11

    Applicant: Adobe Inc.

    Abstract: The present disclosure relates to systems, methods, and non-transitory computer readable media that utilizes artificial intelligence to learn to recommend foreground object images for use in generating composite images based on geometry and/or lighting features. For instance, in one or more embodiments, the disclosed systems transform a foreground object image corresponding to a background image using at least one of a geometry transformation or a lighting transformation. The disclosed systems further generating predicted embeddings for the background image, the foreground object image, and the transformed foreground object image within a geometry-lighting-sensitive embedding space utilizing a geometry-lighting-aware neural network. Using a loss determined from the predicted embeddings, the disclosed systems update parameters of the geometry-lighting-aware neural network. The disclosed systems further provide a variety of efficient user interfaces for generating composite digital images.

    System for automatic video reframing

    公开(公告)号:US11758082B2

    公开(公告)日:2023-09-12

    申请号:US17526853

    申请日:2021-11-15

    Applicant: Adobe Inc.

    Abstract: Systems and methods provide reframing operations in a smart editing system that may generate a focal point within a mask of an object for each frame of a video segment and perform editing effects on the frames of the video segment to quickly provide users with natural video editing effects. A reframing engine may processes video clips using a segmentation and hotspot module to determine a salient region of an object, generate a mask of the object, and track the trajectory of an object in the video clips. The reframing engine may then receive reframing parameters from a crop suggestion module and a user interface. Based on the determined trajectory of an object in a video clip and reframing parameters, the reframing engine may use reframing logic to produce temporally consistent reframing effects relative to an object for the video clip.

    Image segmentation using text embedding

    公开(公告)号:US11615567B2

    公开(公告)日:2023-03-28

    申请号:US16952008

    申请日:2020-11-18

    Applicant: Adobe Inc.

    Abstract: A non-transitory computer-readable medium includes program code that is stored thereon. The program code is executable by one or more processing devices for performing operations including generating, by a model that includes trainable components, a learned image representation of a target image. The operations further include generating, by a text embedding model, a text embedding of a text query. The text embedding and the learned image representation of the target image are in a same embedding space. Additionally, the operations include generating a class activation map of the target image by, at least, convolving the learned image representation of the target image with the text embedding of the text query. Moreover, the operations include generating an object-segmented image using the class activation map of the target image.

    Learning copy space using regression and segmentation neural networks

    公开(公告)号:US11605168B2

    公开(公告)日:2023-03-14

    申请号:US17215067

    申请日:2021-03-29

    Applicant: Adobe Inc.

    Abstract: Techniques are disclosed for characterizing and defining the location of a copy space in an image. A methodology implementing the techniques according to an embodiment includes applying a regression convolutional neural network (CNN) to an image. The regression CNN is configured to predict properties of the copy space such as size and type (natural or manufactured). The prediction is conditioned on a determination of the presence of the copy space in the image. The method further includes applying a segmentation CNN to the image. The segmentation CNN is configured to generate one or more pixel-level masks to define the location of copy spaces in the image, whether natural or manufactured, or to define the location of a background region of the image. The segmentation CNN may include a first stage comprising convolutional layers and a second stage comprising pairs of boundary refinement layers and bilinear up-sampling layers.

Patent Agency Ranking