摘要:
A dual damascene method of fabricating an interconnection level of conductive lines and connecting vias separated by insulation for integrated circuits and substrate carriers for semiconductor devices using a thin protective via mask to form the via openings. A conductive line mask pattern is used to form conductive line openings in an insulating layer. Next, a thin protective layer of conformal material is deposited in the conducive line opening. The protective layer and the insulating layer each have etch resistance to others etchant. Using a via mask pattern, openings are etching the protective layer with the insulating layer serving as and etch stop. Next via openings are etched in the insulating material using the openings in the thin protective layer as the etch mask. If the protective layer is a conductive material, it is removed from the surface of the insulating layer either before or after the conductive line and via openings are filled with a conductive material. If the protective material is an insulating material, it is entirely removed before filling the conductive line and via openings conductive material.
摘要:
A method of manufacturing semiconductor fins for a semiconductor device may begin by providing a bulk semiconductor substrate. The method continues by growing a layer of first epitaxial semiconductor material on the bulk semiconductor substrate, and by growing a layer of second epitaxial semiconductor material on the layer of first epitaxial semiconductor material. The method then creates a fin pattern mask on the layer of second epitaxial semiconductor material. The fin pattern mask has features corresponding to a plurality of fins. Next, the method anisotropically etches the layer of second epitaxial semiconductor material, using the fin pattern mask as an etch mask, and using the layer of first epitaxial semiconductor material as an etch stop layer. This etching step results in a plurality of fins formed from the layer of second epitaxial semiconductor material.
摘要:
A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in strained silicon (SMOS) process. The liner for the trench is formed from a semiconductor or metal layer which is deposited in a low temperature process which reduces germanium outgassing. The low temperature process can be a ALD process.
摘要:
A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in strained silicon (SMOS) process. The liner for the trench is formed to in a low temperature process which reduces germanium outgassing. The low temperature process can be a UVO, ALD, CVD, PECVD, or HDP process.
摘要:
A method of forming a silicon-on-insulator substrate is disclosed, including providing a silicon substrate; depositing a first insulation layer over the silicon substrate; forming a conductive layer over the first insulation layer to a first structure; providing a second structure comprising a silicon device layer and a second insulation layer; bonding the first structure and the second structure together so that the conductive layer is located between the first and second insulation layers; and removing a portion of the silicon device layer thereby providing the silicon-on-insulator substrate having two discrete insulation layers. In one embodiment, the method further includes forming at least one conductive plug through the silicon substrate and the first insulation layer and/or the second insulation layer so as to contact the conductive layer. Methods of facilitating heat removal from the device layer are disclosed.
摘要:
A semiconductor substrate is provided having an insulator thereon with a semiconductor layer on the insulator. A deep trench isolation is formed, introducing strain to the semiconductor layer. A gate dielectric and a gate are formed on the semiconductor layer. A spacer is formed around the gate, and the semiconductor layer and the insulator are removed outside the spacer. Recessed source/drain are formed outside the spacer.
摘要:
A method of manufacturing an integrated circuit (IC) utilizes a shallow trench isolation (STI) technique. The shallow trench isolation technique is used in a strained silicon (SMOS) process. The liner for the trench is formed from a layer deposited in a low temperature process which reduces germanium outgassing. The low temperature process can be an LPCVD. An annealing step can be utilized to form the liner.
摘要:
In one embodiment, the present invention relates to a method for pre-treating and etching a dielectric layer in a semiconductor device comprising the steps of: (A) pre-treating one or more exposed portions of a dielectric layer with a plasma in a plasma etching tool to increase removal rate of the one or more exposed portions upon etching; and (B) removing the one or more exposed portions of the dielectric layer in the same plasma etching tool of step (A) via plasma etching.
摘要:
A NOR gate includes is constructed with two asymmetric FinFET type transistors instead of the conventional four-transistor NOR gate. The reduction in the number of transistors from four down to two allows for significant improvements in integrated semiconductor circuits.
摘要:
A fastening device includes a holding base capable of sliding or rotating on a rod or column, a driving bolt rotatably coupled with a thrusting block rotatably engaged in the holding base having a driving wedge face formed on the thrusting block, and a follower block movably reciprocating in the holding base having a follower wedge face formed on the follower block and tangentially engageable with the driving wedge face of the thrusting block; whereby upon a rotation of the driving bolt to inwardly push the thrusting block in the holding base, the follower block will be thrusted by the driving block to interfere in a rod (or column) surface for quickly, ergonomically and firmly fastening the rod (or column) within the holding base.