摘要:
An integrated circuit and manufacturing method therefor is provided having a semiconductor substrate with a semiconductor device. A dielectric layer formed over the semiconductor substrate has an opening provided therein. The dielectric layer is of non-barrier dielectric material capable of being changed into a barrier dielectric material. The dielectric layer around the opening is changed into the barrier dielectric material and the conductor core material is deposited to fill the opening. The conductor core is processed to form a channel for the integrated circuit.
摘要:
The dimensional accuracy of trench formation and, hence, metal line width, in damascene technology is improved by employing a low Si—SiON etch stop layer/ARC with reduced etch selectivity with respect to the overlying dielectric material but having a reduced extinction coefficient (k). Embodiments include via first-trench last dual damascene techniques employing a low Si—SiON middle etch stop layer/ARC having an extinction coefficient of about −0.3 to about −0.6, e.g., about −0.35, with reduced silicon and increased oxygen vis-à-vis a SiON etch stop layer having an extinction coefficient of about −1.1. Embodiments also include removing about 60% to about 90% of the low Si—SiON etch stop layer/ARC during trench formation, thereby reducing capacitance.
摘要:
An insulating and capping structure of an integrated circuit is formed on a semiconductor wafer. An insulating layer is formed on the semiconductor wafer, and the insulating layer is comprised of a dielectric material having a low dielectric constant that is less than about 4.0 and having chemical bonds that are chemically reactive with a predetermined reactant. A reaction barrier layer is formed on the insulating layer, and the reaction barrier layer is comprised of a material that is not chemically reactive with the predetermined reactant. A capping layer is formed on the reaction barrier layer, and the capping layer is formed using the predetermined reactant. The reaction barrier layer prevents contact of the predetermined reactant with the insulating layer to prevent reaction of the predetermined reactant with the chemical bonds of the dielectric material of the insulating layer that are chemically reactive with the predetermined reactant such that the low dielectric constant of the dielectric material of the insulating layer is not increased by the formation of the capping layer. The present invention may be used to particular advantage when the predetermined reactant used for forming the capping layer and that is reactive with the insulating layer is oxygen plasma and when the reaction barrier layer is comprised of silicon nitride.
摘要:
The present invention provides a method for manufacturing a semiconductor device with a bottom anti-reflective coating (BARC) that acts as an etch stop layer and does not need to be removed. In one embodiment, electrical devices are formed on a semiconductor substrate. Contacts are then formed for each electrical device and a partially UV transparent BARC is then deposited. An inter-layer dielectric (ILD) layer is then formed and then covered with photoresist. A top ARC (TARC) is then added and the photoresist is then photolithographically processed and subsequently developed. The TARC, ILD, and BARC layers are then selectively etched down to the device contacts forming local interconnects. The photoresist and TARC are later removed, but the BARC does not require removal due to its optical transparency.
摘要:
Cu diffusion between Cu and Cu alloy interconnect members, e.g., lines, in a silicon oxide inter-layer dielectric is avoided or substantially reduced by converting an upper portion of the silicon oxide inter-layer dielectric between neighboring lines to silicon oxynitride and then depositing a capping layer. Embodiments include filling damascene trenches in a silicon oxide inter-layer dielectric with Cu or a Cu alloy, CMP to effect planarization such that the upper surfaces of the lines are substantially coplanar with the upper surface of the inter-layer dielectric and treating the exposed surfaces with a nitrogen plasma of sufficient strength to ion bombard the exposed inter line silicon oxide with nitrogen, thereby converting the upper portion to silicon oxynitride, while simultaneously removing or substantially reducing surface oxides on the lines. A silicon nitride capping layer is then deposited.
摘要:
Cu diffusion between Cu and/or Cu alloy interconnect members, e.g., lines, is avoided or substantially reduced by removing an upper portion of the inter-layer dielectric between neighboring lines to form a recess and depositing a diffusion barrier layer filling the recess between neighboring lines. Interconnects in accordance with embodiments of the present invention include Cu and/or Cu filled damascene trenches in a silicon oxide inter-layer dielectric oxide with a recess between neighboring lines filled with a silicon nitride capping layer.
摘要:
Capping layer adhesion to a Cu or Cu alloy interconnect member is enhanced by treating the exposed surface of the Cu or Cu alloy interconnect member with a hydrogen plasma to substantially reduce oxides thereon, forming a thin layer of copper silicide on the treated surface and depositing the capping layer thereon. Embodiments include electroplating or electroless plating Cu or a Cu alloy to fill a damascene opening in a dielectric layer, chemical-mechianiical polishing, hydrogen plasma treatment, reacting the treated surface with silane or dichlorosilane to form a layer of copper silicide on the treated surface and depositing a silicon nitride capping layer on the thin copper silicide layer.
摘要:
A method is provided for manufacturing a semiconductor with fewer steps and minimized variation in the etching process by using SiON as a bottom antireflective (BARC) layer and hard mask in conjunction with a thin photoresist layer. In one embodiment, an etch-stop layer is deposited on a semiconductor substrate, a dielectric layer is deposited on top of the etch-stop layer, and a BARC is deposited on top of the dielectric layer. The BARC is deposited by PECVD to enrich the BARC with semiconductor material to increase the extinction coefficient of the BARC so its thickness can be reduced. A photoresist layer with a thickness less than the thickness of the BARC is then deposited on top of the BARC. The photoresist is then patterned, photolithographically processed, developed, and removed. The BARC is then etched away in the pattern developed on the photoresist and the photoresist is then removed. The BARC is then used as a mask for the etching of the dielectric layer. A conductive material is deposited over the BARC and the dielectric layer and is subsequently removed in the process of polishing the conductive material without requiring a separate BARC removal step.
摘要:
A method for using low dielectric SiOF in a process to manufacture semiconductor products, comprising the steps of obtaining a layer of SiOF, and depleting fluorine from a surface of the SiOF layer. In a preferred embodiment, the depleting step comprises the step of treating the surface of the layer of SiOF with a plasma containing ammonia. It is further preferred that the treated surface be passivated by a nitrite plasma. The invention also encompasses a semiconductor chip comprising an integrated circuit with at least a first and second layers, and with a dielective layer of SiOF disposed between the layers, wherein the SiOF dielectric layer includes a first region at one edge thereof which is depleted of fluorine to a predetermined depth.
摘要:
Cu diffusion between Cu and Cu alloy interconnect members, e.g., lines, is avoided or substantially reduced by selectively removing an upper portion of the inter-layer dielectric between neighboring lines to form a recess and depositing a diffusion barrier layer filling the recess between neighboring lines. Embodiments include filling damascene trenches in a silicon oxide inter-layer dielectric with Cu or a Cu alloy, CMP to effect planarization such that the upper surfaces of the lines are substantially coplanar with the upper surface of the inter-layer dielectric, and double-sided brush scrubbing with water. The planarized surface is then etched, as by treatment with a HF solution, to selectively remove silicon oxide between neighboring lines to form a recess therebetween. The exposed surfaces of the neighboring lines are then treated with an ammonia plasma to remove or substantially reduce oxides and a silicon nitride diffusion barrier layer is deposited on the neighboring lines filling the recesses between neighboring lines.