Abstract:
A laser drive controller compensates for temperature-dependent effects of a temperature-sensitive laser. Temperature variations in the laser may be measured and/or predicted based on variable pulsed output. The controller may drive the laser to maintain temperature and/or to compensate for variations in temperature. The techniques may be applied to a laser scanner, scanned beam display, laser printer, laser camera, scanned beam imager, etc.
Abstract:
Embodiments include a device and a method. In an embodiment, a device provides a resource manager operable to select a resource management policy likely to provide a substantially optimum execution of an instruction group by comparing an execution of the instruction group pursuant to a first resource management policy applied to a hardware resource and an execution of the instruction group pursuant to a second resource management policy applied to the hardware resource.
Abstract:
Embodiments include a device and a method. In an embodiment, a device includes a processor having an associated hardware resource and operable to execute an instruction group. The device also includes a resource manager operable to implement a resource management policy for the hardware resource with respect to an execution of the instruction group, the resource management policy responsive to a prediction of a future performance of the hardware resource based at least in part on a historical performance of the hardware resource.
Abstract:
Embodiments include a controller apparatus, a computerized apparatus, a device, an apparatus, and a method. A controller-apparatus includes a monitoring circuit for detecting a computational error corresponding to an execution of an instruction of a sequence of instructions by a processor subsystem having an adjustable operating parameter. The controller apparatus also includes a recovery circuit for rolling back an execution of the sequence of instructions to a checkpoint in response to the detected computational error. The controller apparatus further includes a control circuit for adjusting the adjustable operating parameter in response to a performance criterion.
Abstract:
Embodiments include a computer processor-error controller, a computerized device, a device, an apparatus, and a method. A computer processor-error controller includes a monitoring circuit operable to detect a computational error corresponding to an execution of a second instruction by a processor operable to execute a sequence of program instructions that includes a first instruction that is fetched before the second instruction. The computer processor-error controller includes an error recovery circuit operable to restore an execution of the sequence of program instructions to the first instruction in response to the detected computational error.
Abstract:
Embodiments include a device, and a method. In an embodiment, a device includes a processor operable to execute an instruction set, a communications link exposed to an execution-optimization synthesizer and to the processor, and the execution-optimization synthesizer. The execution-optimization optimization synthesizer includes an execution-optimization synthesizer operable to collect data from the communications link that corresponds to an execution of at least one instruction of the instruction set, and generate an execution-optimization information utilizing the collected data from the communications link and corresponding to the execution of at least one instruction of the instruction set.
Abstract:
A scanning system device has a predetermined aberration as it scans or switches light along selected optical paths. A deformable membrane receives the light and introduces an inverse “aberration” that offsets that of the scanning system. In one embodiment the scanning system includes a torsion arm that supports an oscillatory body. The torsion arm and/or body can be machined from metal, micromachined in silicon or formed in a variety of other ways. Alternatively, the scanning system may include a rotating polygonal scanner or other type of optical scanner. In another approach, an optical switch replaces the scanner.
Abstract:
Various embodiments of methods and systems for constructing and utilizing displays constructed from superimposed display subunits are disclosed.
Abstract:
Various embodiments of methods and systems for designing and constructing displays from multiple light emitting elements are disclosed. Display elements having different light emitting and self-organizing characteristics may be used during display assembly.