摘要:
Embodiments include a device and a method. In an embodiment, a method applies a first resource management strategy to a first resource associated with a first processor and executes an instruction block in a first processor. The method also applies a second resource management strategy to a second resource of a similar type as the first resource and executes the instruction block in a second processor. The method further selects a resource management strategy likely to provide a substantially optimum execution of the instruction group from the first resource management strategy and the second resource management strategy.
摘要:
Embodiments include a device and a method. In an embodiment, a method applies a first resource management strategy to a first resource associated with a first processor and executes an instruction block in a first processor. The method also applies a second resource management strategy to a second resource of a similar type as the first resource and executes the instruction block in a second processor. The method further selects a resource management strategy likely to provide a substantially optimum execution of the instruction group from the first resource management strategy and the second resource management strategy.
摘要:
Embodiments include a device and a method. In an embodiment, a method applies a first resource management strategy to a first resource associated with a first processor and executes an instruction block in a first processor. The method also applies a second resource management strategy to a second resource of a similar type as the first resource and executes the instruction block in a second processor. The method further selects a resource management strategy likely to provide a substantially optimum execution of the instruction group from the first resource management strategy and the second resource management strategy.
摘要:
Embodiments of a lumenally-active system and method of use and control thereof are disclosed. According to various embodiments, a lumenally-active device is positioned in a body lumen of an organism, where the device may sense a parameter of a fluid in the body lumen and perform an action on the fluid. Control logic and/or circuitry may be located on the device, or the system may include a separate control module. Liquid or gaseous fluids may be treated by embodiments of the device. Actions may include, for example, modification of a body fluid by addition or removal of a material, or by modification of a property of a body fluid or a component thereof.
摘要:
Lumen-traveling devices and associated methods and systems are described. Lumen-traveling devices capable of traveling within a body lumen may include a propelling mechanism to produce movement of the lumen-traveling device within the lumen, as well as additional components such as a sensor, an active portion, and/or control circuitry. In some embodiments, a sensor may be used to detect a local condition, and an action may be performed within the body lumen. Actions that may be performed include, but are not limited to, transmitting information, releasing a material within the lumen, performing a surgical step, or collecting a sample, among others.
摘要:
Embodiments include a device and a method. In an embodiment, a device provides a resource manager operable to select a resource management policy likely to provide a substantially optimum execution of an instruction group by comparing an execution of the instruction group pursuant to a first resource management policy applied to a hardware resource and an execution of the instruction group pursuant to a second resource management policy applied to the hardware resource.
摘要:
Embodiments include a device, and a method. In an embodiment, a device includes a microengine operatively coupled with a processor having an instruction set. The microengine includes a microengine operable gather data in a manner transparent to software executing on the processor and corresponding to a runtime execution of at least a portion of the instruction set by the processor. The microengine is also operable to create a runtime-based optimization profile utilizing the gathered dynamic data and which is useable in a subsequent execution of the at least of a portion of the instruction set by the processor.
摘要:
Embodiments include a device, apparatus, and a method. In an embodiment, an apparatus includes a first processor operable to execute a program. The apparatus also includes an information store configured by an execution-based optimization profile, the execution-based optimization profile usable in an execution of the program and that was created utilizing data collected during a runtime execution of the program by a second processor and transparent to software executing on the second processor. The apparatus further includes an execution-optimization circuit operable to alter an execution of the program by the first processor in response to the execution-based optimization profile.
摘要:
Embodiments of a lumenally-active system and method of use and control thereof are disclosed. According to various embodiments, a lumenally-active device is positioned in a body lumen of an organism, where the device may sense a parameter of a fluid in the body lumen and perform an action on the fluid. Control logic and/or circuitry may be located on the device, or the system may include a separate control module. Liquid or gaseous fluids may be treated by embodiments of the device. Actions may include, for example, modification of a body fluid by addition or removal of a material, or by modification of a property of a body fluid or a component thereof.
摘要:
Embodiments include a device, and a method. In an embodiment, a device includes a processor operable to execute an instruction set, and an execution-optimization circuit. The execution circuit includes an execution circuit for receiving an identification of a first instruction to be fetched from the instruction set for execution by the processor, and for pointing to a second instruction of the instruction set of the processor to be fetched for execution by the processor if indicated by an execution-based optimization profile. The execution-based optimization profile being previously derived by a hardware device utilizing data invisible to software and generated during a runtime execution of at least a portion of the instruction set. The execution-optimization circuit may include at least one of a microengine, a micro-programmed circuit, and/or a hardwired circuit.