Abstract:
A mobile device screen projection system for an in-vehicle display is provided. The system receives mobile device content from a mobile device, receives context data from a plurality of information sources associated with at least one of the vehicle and the mobile device, determines an integrated context based on the context data, and selectively renders the mobile device content on the in-vehicle display based on the integrated context.
Abstract:
A method of creating a high-definition (HD) map of a roadway includes receiving a multi-layer probability density bitmap. The multi-layer probability density bitmap represents a plurality of lane lines of the roadway sensed by a plurality of sensors of a plurality of vehicles. The multi-layer probability density bitmap includes a plurality of points. The method further includes recursively conducting a hill climbing search using the multi-layer probability density bitmap to create a plurality of lines. In addition, the method includes creating the HD map of the roadway using the plurality of lines determined by the hill climbing search.
Abstract:
A system for fusing two or more versions of map data together includes one or more central computers that receive road network data representing a road network for a predefined geofenced area. The central computers compute a plurality of points that are each positioned at a predetermined distance from one another. The central computers create a plurality of bounding boxes for the road network based on the plurality of points and create a set of closest matched map data points for each bounding box that is part of the road network by executing a map-matching registration algorithm to align the two or more versions of map data with one another. The central computers execute a maximum likelihood estimation algorithm to determine probability distribution parameters of the set of closest matched map data points compared to the ground truth map data.
Abstract:
A system comprises a computer including a processor and a memory. The memory includes instructions such that the processor is programmed to: receive safety messages from a plurality of vehicles in communication with the edge server, determine an uplink frequency recommendation for transmitting safety messages from at least one vehicle of the plurality of vehicles based on at least one of a position error or a collision risk, determine a downlink frequency recommendation for transmitting safety messaging to at least one vehicle of the plurality of vehicles based on at least one of a position error or a collision risk, and transmit the frequency recommendations to the at least one vehicle.
Abstract:
A map updating system for a vehicle includes one or more input devices. The input device generates an input signal associated with data indicative of multiple landmark points relative to multiple road semantic features. The system further includes a computer having one or more processors that receive the input signal. The computer further includes a non-transitory computer readable storage medium for storing instructions. The processor is programmed to build a local map including the road semantic features and the landmark points. The processor is further programmed to determine a radius of road curvature associated with each road semantic feature and compare the radius of road curvature to a maximum radius of curvature threshold. The processor is further programmed to transmit an update signal to a cloud server, in response the processor determining that the radius of road curvature is less than the maximum radius of curvature threshold.
Abstract:
A method for quantifying map errors includes receiving first map data and second map data. The method includes receiving a road topographic map. The method further includes dividing the road into road segments. The method further includes creating a plurality of bounding boxes for each of the plurality of road segments. The method includes creating a first map tile and a second map tile by filtering out the bounding boxes. The method includes executing point cloud registration to align the plurality of first data points in the first map tile with the plurality of second data points in the second map tile to determine a plurality of absolute offsets between the plurality of first data points and the plurality of second data points. The method includes determining a relative map error between the first map and the second map based on the absolute offsets.
Abstract:
A method of creating a high-definition (HD) map of a roadway includes receiving a multi-layer probability density bitmap. The multi-layer probability density bitmap represents a plurality of lane lines of the roadway sensed by a plurality of sensors of a plurality of vehicles. The multi-layer probability density bitmap includes a plurality of points. The method further includes recursively conducting a hill climbing search using the multi-layer probability density bitmap to create a plurality of lines. In addition, the method includes creating the HD map of the roadway using the plurality of lines determined by the hill climbing search.
Abstract:
A method includes receiving sensor data from a plurality of sensors of a plurality of vehicles. The sensor data includes vehicle GPS data and sensed lane line data of the roadway. The method further includes creating a plurality of multi-layer bitmaps for each of the plurality of vehicles using the sensor data, fusing the plurality of the multi-layer bitmaps of each of the plurality of vehicles to create a fused multi-layer bitmap, creating a plurality of multi-layer probability density bitmaps using the fused multi-layer bitmap, extracting lane line data from the plurality of multi-layer probability density bitmaps, and creating the high-definition (HD) map of the roadway using the multi-layer probability density bitmaps and the lane line data extracted from the plurality of multi-layer probability density bitmaps.
Abstract:
A system for active roll control for a vehicle body is provided and includes a sensor operable to monitor a tilt of the body and a suspension system. The suspension system includes an active sway bar including a first bar portion, a second bar portion, and an active roll control motor disposed between the first bar portion and the second bar portion. The active roll control motor is operable to turn the first bar portion in relation to the second bar portion. The system further includes a computerized active roll control controller which is operative to monitor a driving mode including one of straight-line driving and rounding a curve on a road, monitor an output of the sensor, determine a desired roll moment based upon the driving mode and the output of the sensor, and control the active roll control motor based upon the desired roll moment.
Abstract:
A system comprises a processor and a memory storing instructions which when executed by the processor configure the processor to estimate a rack force for a steering system of a vehicle based on current driving and environmental conditions and estimate a health of an actuator of the steering system of the vehicle. The instructions configure the processor to estimate maximum achievable angle, velocity, and acceleration for the actuator of the steering system based on the estimated rack force and the estimated health of the actuator. The instructions configure the processor to provide to the steering system a path planned for the vehicle based on the estimated maximum achievable angle, velocity, and acceleration for the actuator of the steering system.