摘要:
An image pickup lens has a focal length far from a position of a transparent member. An image pickup device is put on the side of the transparent member the same as that of a light source and takes reflected light including regular reflection from an interface between an adhered object on the other surface of the transparent member and air. Assuming an incident angle of the emitted light on the transparent member when the light reflected in regular reflection by the other surface of the transparent member is incident on the image pickup lens being θs, an incident angle of a typical light beam of the emitted light falls within θs−30 deg through θs and an incident angle of a main element of the emitted light is less than θs.
摘要:
A foreign substance detection system includes an optical device having an input surface through which is part of light emitted from a light source enters the optical device and a transparent face, provided in close contact with an inner surface of a glass, to transmit a light reflected from an area where a substance is not present on an outer surface of the glass toward a first light-receiving member; a light-guiding member to guide another part of the light that does not pass through the input surface, the guided light being to be reflected from an area where a substance is present on an inner surface of the glass toward a second light-receiving member; and an foreign substance detection processor to detect an outer substance based on the first light-receiving member and detect the inner substance based on the second light-receiving member.
摘要:
An image pickup lens has a focal length far from a position of a transparent member. An image pickup device is put on the side of the transparent member the same as that of a light source and takes reflected light including regular reflection from an interface between an adhered object on the other surface of the transparent member and air. Assuming an incident angle of the emitted light on the transparent member when the light reflected in regular reflection by the other surface of the transparent member is incident on the image pickup lens being θs, an incident angle of a typical light beam of the emitted light falls within θs−30 deg through θs and an incident angle of a main element of the emitted light is less than θs.
摘要:
A stereo camera apparatus includes a first image capturing unit having first and second lens units, a first light synthesis unit, a first area-divided filter, and a first image capturing element. The first light synthesis unit and the first area-divided filter guide S-polarized and P-polarized light components to the first image capturing element. The second image capturing unit includes third and fourth lens units, a second light synthesis unit, a second area-divided filter, and a second image capturing element. The second light synthesis unit and the second area-divided filter guide S-polarized and P-polarized light components to the second image capturing element. The control unit includes first and second controllers to compute three-dimensional data of object using the S-polarized and P-polarized light component images, respectively.
摘要:
A spectral image acquiring apparatus includes an optical filter on which light is incident; an image sensor including a two-dimensionally disposed pixel array for detecting the light via the optical filter; and a signal processing unit generating a difference-value image based on a detection signal from the image sensor. The optical filter includes a diffraction grating having a lattice pattern corresponding to one or more pixels on the image sensor. The signal processing unit calculates a difference value in an amount of received light between two adjacent pixels based on the detection signal from the image sensor, and generates the difference-value image based on the difference value. The difference value between the two adjacent pixels is varied depending on a difference in an interference point on the image sensor corresponding to a diffraction angle of the light that has passed through the diffraction grating.
摘要:
Disclosed is a liquid droplet recognition apparatus for detecting liquid droplets attached to a front surface of a transparent member. The apparatus includes an image pickup apparatus that picks up a vertically polarized light image and a horizontally polarized light image at the front surface of the transparent member from a side of a rear surface of the transparent member; and a signal processing unit that determines whether the liquid droplets are attached to the front surface of the transparent member based on a polarized-light image ratio composed of the vertically polarized light image and the horizontally polarized light image picked up by the image pickup apparatus.
摘要:
An object identifying apparatus is disclosed, including: an imaging part, and an object identification processing part. The imaging part receives two polarized lights having a different polarization direction included in light reflected from the object existing in the image pickup area and captures two polarization images. The object identification processing part conducts an identification process for identifying the object existing at a place corresponding to each of multiple process areas in the image pickup area by using the two polarization images captured by the imaging part.
摘要:
An optical element for resonating and reflecting incident light having a wavelength includes a periodic structure formed of protrusions and recessions. A period of the periodic structure is equal to or less than the wavelength of the incident light. The incident light having the wavelength is resonated and reflected by a resonance caused between the incident light and the protrusions and recessions. Widths of the protrusions are spatially changed.
摘要:
An imaging element includes a light receiving surface having pixels, and a low-pass filter device configured to focus predetermined light on a predetermined pixel of the pixels of the light-receiving surface.
摘要:
An optical pickup device is disclosed. In the optical pickup device, S-polarized light is input to a polarization filter from a DVD light source or a CD light source. Since the polarization filter transmits through the S-polarized light and diffracts P-polarized light, the S-polarized light is transmitted through the polarization filter. The S-polarized light is converted into three beams by being diffracted by a diffraction element. The three beams reflected at a polarization beam splitter are converted into circularly polarized light by a ¼ wavelength plate via a collimate lens, and the circularly polarized light is condensed on an optical recording medium via an objective lens. Light reflected from the optical recording medium is converted into linear P-polarized light by the ¼ wavelength plate via the objective lens. Substantially almost all P-polarized light is transmitted through the polarization beam splitter. A slight amount of the returning light travels to the side of the light source.