Abstract:
An electrostatic discharge (ESD) protection element includes a collector area, a first barrier area, a semiconductor area, a second barrier area and an emitter area. The collector area has a first conductivity type. The first barrier area borders on the collector area and has a second conductivity type. The semiconductor area borders on the first barrier area and is an intrinsic semiconductor area, or has the first or second conductivity type and a dopant concentration which is lower than a dopant concentration of the first barrier area. The second barrier area borders on the semiconductor area and has the second conductivity type and a higher dopant concentration than the semiconductor area. The emitter area borders on the second barrier area and has the first conductivity type.
Abstract:
In accordance with an embodiment, a switchable capacitance circuit includes a plurality of capacitance-switch cells that each has a first semiconductor switching circuit and a capacitance circuit having a first terminal coupled to the first semiconductor switching circuit. A resistance of the first semiconductor switching circuit of a first switch-capacitance cell of the plurality of capacitance-switch cells is within a first tolerance of a resistance of the first semiconductor switching circuit of a second capacitance-switch cell of the plurality of capacitance-switch cells, and a capacitance of the capacitance circuit of the first capacitance-switch cell is within a second tolerance of a capacitance of the capacitance circuit of the second capacitance-switch cell.
Abstract:
A semiconductor device includes a semiconductor substrate having a first main surface in which a recess is formed. Further, the semiconductor device includes an electrical interconnect structure which is arranged at a bottom of the recess. A semiconductor chip is located in the recess. The semiconductor chip includes a plurality of chip electrodes facing the electrical interconnect structure. Further, a plurality of electrically conducting elements is arranged in the electrical interconnect structure and electrically connected to the plurality of chip electrodes.
Abstract:
An impedance matching network comprises a first and a second signal terminal and a reference potential terminal. The network further comprises a first shunt branch between the first signal terminal and the reference potential terminal, the first shunt branch comprising a variable inductive element and a first capacitive element. The impedance matching network also comprises a second shunt branch between the second signal terminal and the reference potential terminal and comprising a second capacitive element. A series branch between the first signal terminal and the second signal terminal comprises a third capacitive element. Optionally, the first, second, and/or third capacitive element may be implemented as a variable capacitive element. The variable capacitive element comprises a plurality of transistors, wherein a combination of off-capacitances Coff of the transistors provide an overall capacitance of the variable capacitive element as a function of at least two independent transistor control signals.
Abstract:
An electrostatic discharge (ESD) protection element includes a collector area, a first barrier area, a semiconductor area, a second barrier area and an emitter area. The collector area has a first conductivity type. The first barrier area borders on the collector area and has a second conductivity type. The semiconductor area borders on the first barrier area and is an intrinsic semiconductor area, or has the first or second conductivity type and a dopant concentration which is lower than a dopant concentration of the first barrier area. The second barrier area borders on the semiconductor area and has the second conductivity type and a higher dopant concentration than the semiconductor area. The emitter area borders on the second barrier area and has the first conductivity type.
Abstract:
A high-frequency switching circuit includes a high-frequency switching transistor, wherein a high-frequency signal-path extends via a channel-path of the high-frequency switching transistor. The high-frequency switching circuit includes a control circuit and the control circuit is configured to apply at least two different bias potentials to a substrate of the high-frequency switching transistor, depending on a control signal received by the control circuit.