Abstract:
Embodiments allow one or more eNBs that become isolated from core network entities (e.g., evolved packet core entities such as mobility management entity, serving gate way, packet data network gateway, and so forth) to form a resilient mode network. Such a network can function in a limited fashion and provide for UE to UE communications within the resilient mode network coverage area. One or more of the eNBs function as an autonomous eNB and provide a subset of core network functions that allow UE to UE communications within the resilient mode network coverage area. Embodiments disclosed herein select which eNB functions as the autonomous eNB and then the other eNBs establish an S1-MME and/or S1-U interface with the autonomous eNB.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of processing Packet Data Convergence Protocol (PDCP) Protocol Data Units (PDUs) of an Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) Radio Access Bearer (E-RAB). For example, an apparatus may include PDCP processor configured to process a plurality of PDUs of an E-RAB, the PDCP processor configured to apply a sequence of a plurality of PDCP procedures to one or more first PDUs communicated via the cellular link, and to apply no more than a part of the sequence of PDCP procedures, by selecting not to apply one or more of the plurality of PDCP procedures, to one or more second PDUs communicated via a non-cellular Radio Access Technology (RAT).
Abstract:
Technology for communicating access point (AP) information for traffic offloading is disclosed. A request may be received, at a wireless local area network (WLAN) domain manager (DM) from an evolved node B (eNB), for access point (AP) information about one or more WLAN access points (APs) for traffic offloading. The access point (AP) information may be obtained for the one or more WLAN APs, at the WLAN DM, based on at least in part operations and management (OAM) reports from the one or more WLAN APs containing the AP information. The AP information may be communicated, from the WLAN DM to the eNB via a network manager (NM), about the one or more WLAN APs to enable traffic offloading from the eNB to at least one of the WLAN APs.
Abstract:
Embodiments described herein relate generally to techniques for paging in a wireless network. In some embodiments, a mobility management entity (MME) may determine a user equipment (UE) is associated with a predetermined category and adjust paging mechanisms based on said determination. Other embodiments may be described and claimed.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of establishing a connection between a cellular node and a core network. For example, a first Evolved Node B (eNB) may include a cellular transceiver to communicate with a User Equipment (UE); an X2 interface to communicate with at least one second eNB; and a controller to send to the second eNB a first message including a core network node discovery request, to receive from the second eNB a second message including a core network node identifier, and to establish an S1 connection between the first eNB and a core network using the core network node identifier.
Abstract:
Embodiments of the present disclosure describe systems, devices, and methods for long-term evolution and wireless local area interworking. Various embodiments may include utilizing access network selection and traffic steering rules based on radio access network assistance parameters. Other embodiments may be described or claimed.
Abstract:
Wireless communication traffic can be offloaded from a user equipment (UE) to two wireless points of access. For example, user equipment (UE) is connected to a radio access network (RAN) using a radio access technology (RAT) such as a long term evolution (LTE) network. The UE can determine which network capabilities are available for traffic offloading and adapt to the capabilities presented. In one embodiment, the UE can determine whether the network supports three different configurations and configure traffic offloading to operate within the network conditions: (1) RAN rules without access network detection and selection function (ANDSF), (2) ANDSF in conjunction with RAN rules or (3) enhanced ANDSF with RAN assistance.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of communicating between a cellular manager and a User Equipment (UE) via a Wireless Local Area network (WLAN) access device. For example, an air interface to communicate with a User Equipment (UE) via a cellular link; a controller to route at least part of downlink traffic to the UE via a Wireless Local Area Network (WLAN) access device; and an access device interface to send to the WLAN access device a general packet radio service (GPRS) Tunneling Protocol User Plane (GTP-U) packet including the downlink traffic for the UE, and transport bearer information to identify a transport bearer between the eNB and the UE.
Abstract:
Embodiments of the present disclosure describe systems, devices, and methods for long-term evolution and wireless local area interworking. Various embodiments may include utilizing access network selection and traffic steering rules based on radio access network assistance parameters. Other embodiments may be described or claimed.
Abstract:
Some demonstrative embodiments include devices, systems of securing communications of a User Equipment (UE) in a Wireless Local Area Network (WLAN). For example, a cellular node may transmit to a UE a cellular message including a UE security key, and a WLAN access device may communicate with the cellular node security information including the UE security key. The WLAN access device may communicate with the UE based on the UE security key, e.g., to authenticate the UE and/or encrypt communications with the UE.