LOW COST CARBON MATERIALS FOR THE CAPTURE OF CO2 AND H2S FROM VARIOUS ENVIRONMENTS
    82.
    发明申请
    LOW COST CARBON MATERIALS FOR THE CAPTURE OF CO2 AND H2S FROM VARIOUS ENVIRONMENTS 审中-公开
    用于从各种环境中捕获二氧化碳和硫化氢的低成本碳材料

    公开(公告)号:US20150111018A1

    公开(公告)日:2015-04-23

    申请号:US14458802

    申请日:2014-08-13

    IPC分类号: B01D53/04 B01J20/30 B01J20/20

    摘要: In some embodiments, the present disclosure pertains to methods of capturing a gas from an environment by associating the environment with a porous carbon material that includes, without limitation, protein-derived porous carbon materials, carbohydrate-derived porous carbon materials, cotton-derived porous carbon materials, fat-derived porous carbon materials, waste-derived porous carbon materials, asphalt-derived porous carbon materials, coal-derived porous carbon materials, coke-derived porous carbon materials, asphaltene-derived porous carbon materials, oil product-derived porous carbon materials, bitumen-derived porous carbon materials, tar-derived porous carbon materials, pitch-derived porous carbon materials, anthracite-derived porous carbon materials, melamine-derived porous carbon materials, and combinations thereof. In some embodiments, the associating results in sorption of gas components (e.g., CO2, H2S, and combinations thereof) to the porous carbon material. Additional embodiments of the present disclosure pertain to the porous carbon materials and methods of making the same.

    摘要翻译: 在一些实施方案中,本公开涉及通过将环境与多孔碳材料缔合而捕获气体的方法,所述多孔碳材料包括但不限于蛋白质衍生的多孔碳材料,来自碳水化合物的多孔碳材料,来自棉花的多孔碳材料 碳材料,脂肪衍生的多孔碳材料,废物衍生的多孔碳材料,沥青衍生的多孔碳材料,煤衍生的多孔碳材料,焦炭衍生的多孔碳材料,沥青质衍生的多孔碳材料,油产品多孔碳材料 碳材料,沥青衍生的多孔碳材料,焦油衍生的多孔碳材料,沥青衍生的多孔碳材料,无烟煤衍生的多孔碳材料,三聚氰胺衍生的多孔碳材料及其组合。 在一些实施方案中,缔合导致气体组分(例如,CO 2,H 2 S及其组合)吸附至多孔碳材料。 本公开的另外的实施方案涉及多孔碳材料及其制备方法。

    SYNTHESIS OF MAGNETIC CARBON NANORIBBONS AND MAGNETIC FUNCTIONALIZED CARBON NANORIBBONS
    83.
    发明申请
    SYNTHESIS OF MAGNETIC CARBON NANORIBBONS AND MAGNETIC FUNCTIONALIZED CARBON NANORIBBONS 有权
    磁性纳米颗粒和磁性功能碳纳米管的合成

    公开(公告)号:US20150108391A1

    公开(公告)日:2015-04-23

    申请号:US14374591

    申请日:2013-01-28

    IPC分类号: H01F1/01

    摘要: Various embodiments of the present disclosure pertain to methods of making magnetic carbon nanoribbons. Such methods generally include: (1) forming carbon nanoribbons by splitting carbon nanomaterials; and (2) associating graphene nanoribbons with magnetic materials, precursors of magnetic materials, or combinations thereof. Further embodiments of the present disclosure also include a step of reducing the precursors of magnetic materials to magnetic materials. In various embodiments, the associating occurs before, during or after the splitting of the carbon nanomaterials. In some embodiments, the methods of the present disclosure further comprise a step of (3) functionalizing the carbon nanoribbons with functionalizing agents. In more specific embodiments, the functionalizing occurs in situ during the splitting of carbon nanomaterials. In further embodiments, the carbon nanoribbons are edge-functionalized. Additional embodiments of the present disclosure pertain to magnetic carbon nanoribbon compositions that were formed in accordance with the methods of the present disclosure.

    摘要翻译: 本公开的各种实施方案涉及制备磁性碳纳米带的方法。 这些方法通常包括:(1)通过分解碳纳米材料形成碳纳米带; 和(2)将石墨烯纳米带与磁性材料,磁性材料的前体或其组合相关联。 本公开的另外的实施方案还包括将磁性材料的前体还原成磁性材料的步骤。 在各种实施方案中,缔合发生在碳纳米材料分裂之前,期间或之后。 在一些实施方案中,本公开的方法还包括(3)用官能化试剂官能化碳纳米带的步骤。 在更具体的实施方案中,官能化在碳纳米材料分裂过程中就地发生。 在另外的实施方案中,碳纳米带是边缘官能化的。 本公开的另外的实施方案涉及根据本公开的方法形成的磁性碳纳米纤维组合物。

    Layer-by-layer removal of graphene
    84.
    发明授权
    Layer-by-layer removal of graphene 有权
    逐层去除石墨烯

    公开(公告)号:US09005460B2

    公开(公告)日:2015-04-14

    申请号:US13878876

    申请日:2011-10-11

    摘要: The present invention provides methods of selectively removing one or more graphene layers from a graphene material by: (1) applying a metal to a surface of the graphene material; and (2) applying a hydrogen containing solution to the surface of the graphene material that is associated with the metal. The hydrogen containing solution dissolves the metal along with one or more layers of graphene associated with the metal, thereby removing the layer(s) of graphene from the graphene material. In some embodiments, the hydrogen containing solution is an acidic solution, such as hydrochloric acid. In some embodiments, the metal is zinc. In some embodiments, the methods of the present invention are utilized to selectively remove one or more layers of graphene from one or more targeted sites on the surface of a graphene material.

    摘要翻译: 本发明提供了通过以下步骤从石墨烯材料中选择性地去除一个或多个石墨烯层的方法:(1)将金属施加到石墨烯材料的表面; 和(2)将含氢溶液施加到与金属相关联的石墨烯材料的表面。 含氢溶液与一个或多个与金属相关的石墨烯层一起溶解金属,从而从石墨烯材料去除石墨烯层。 在一些实施方案中,含氢溶液是酸性溶液,例如盐酸。 在一些实施方案中,金属是锌。 在一些实施方案中,本发明的方法用于从石墨烯材料表面上的一个或多个目标位点选择性地除去一层或多层石墨烯。

    Graphene nanoribbons prepared from carbon nanotubes via alkali metal exposure
    85.
    发明授权
    Graphene nanoribbons prepared from carbon nanotubes via alkali metal exposure 有权
    通过碱金属曝光从碳纳米管制备的石墨烯纳米带

    公开(公告)号:US08992881B2

    公开(公告)日:2015-03-31

    申请号:US13378528

    申请日:2010-06-11

    摘要: In various embodiments, the present disclosure describes processes for preparing functionalized graphene nanoribbons from carbon nanotubes. In general, the processes include exposing a plurality of carbon nanotubes to an alkali metal source in the absence of a solvent and thereafter adding an electrophile to form functionalized graphene nanoribbons. Exposing the carbon nanotubes to an alkali metal source in the absence of a solvent, generally while being heated, results in opening of the carbon nanotubes substantially parallel to their longitudinal axis, which may occur in a spiralwise manner in an embodiment. The graphene nanoribbons of the present disclosure are functionalized on at least their edges and are substantially defect free. As a result, the functionalized graphene nanoribbons described herein display a very high electrical conductivity that is comparable to that of mechanically exfoliated graphene.

    摘要翻译: 在各种实施方案中,本公开描述了从碳纳米管制备官能化石墨烯纳米带的方法。 通常,该方法包括在不存在溶剂的情况下将多个碳纳米管暴露于碱金属源,然后加入亲电体以形成官能化的石墨烯纳米带。 通常在加热的情况下,将碳纳米管暴露于碱金属源,通常在被加热的情况下导致碳纳米管的开口基本上平行于它们的纵向轴线,这在实施例中可以以螺旋方式发生。 本公开的石墨烯纳米带至少在其边缘上被官能化,并且基本上是无缺陷的。 因此,本文所述的功能化石墨烯纳米带显示出与机械剥离的石墨烯相当的非常高的电导率。

    SOLVENT-BASED METHODS FOR PRODUCTION OF GRAPHENE NANORIBBONS
    86.
    发明申请
    SOLVENT-BASED METHODS FOR PRODUCTION OF GRAPHENE NANORIBBONS 有权
    用于生产石墨纳米粒子的溶剂型方法

    公开(公告)号:US20150057417A1

    公开(公告)日:2015-02-26

    申请号:US14345016

    申请日:2012-09-14

    摘要: The present invention provides methods of preparing functionalized graphene nanoribbons. Such methods include: (1) exposing a plurality of carbon nanotubes (CNTs) to an alkali metal source in the presence of an aprotic solvent to open them; and (2) exposing the opened CNTs to an electrophile to form functionalized graphene nanoribbons (GNRs). The methods may also include a step of exposing the opened CNTs to a protic solvent to quench any reactive species on them. Additional methods include preparing unfunctionalized GNRs by: (1) exposing a plurality of CNTs to an alkali metal source in the presence of an aprotic solvent to open them; and (2) exposing the opened CNTs to a protic solvent to form unfunctionalized GNRs.

    摘要翻译: 本发明提供了制备官能化石墨烯纳米带的方法。 这些方法包括:(1)在非质子溶剂的存在下将多个碳纳米管(CNT)暴露于碱金属源以将其打开; 和(2)将开放的CNT暴露于亲电子试剂以形成官能化的石墨烯纳米带(GNR)。 所述方法还可以包括将开放的CNT暴露于质子溶剂以淬灭其上的任何反应性物质的步骤。 另外的方法包括:通过以下步骤制备未官能化的GNR:(1)在非质子溶剂存在下将多个CNT暴露于碱金属源以打开它们; 和(2)将开放的CNT暴露于质子溶剂以形成未官能化的GNR。

    FABRICATION OF GRAPHENE NANORIBBONS AND NANOWIRES
    88.
    发明申请
    FABRICATION OF GRAPHENE NANORIBBONS AND NANOWIRES 有权
    石墨纳米薄膜和纳米颗粒的制备

    公开(公告)号:US20140220773A1

    公开(公告)日:2014-08-07

    申请号:US14171642

    申请日:2014-02-03

    IPC分类号: H01L21/768 H01L21/311

    摘要: In some embodiments, the present disclosure pertains to methods of preparing graphene nanoribbons from a graphene film associated with a meniscus, where the method comprises patterning the graphene film while the meniscus acts as a mask above a region of the graphene film, and where the patterning results in formation of graphene nanoribbons from the meniscus-masked region of the graphene film. Additional embodiments of the present disclosure pertain to methods of preparing wires from a film associated with a meniscus, where the method comprises patterning the film while the meniscus acts as a mask above a region of the film, and where the patterning results in formation of a wire from the meniscus-masked region of the film. Additional embodiments of the present disclosure pertain to chemical methods of preparing wires from water-reactive materials.

    摘要翻译: 在一些实施方案中,本公开涉及从与弯液面相关联的石墨烯膜制备石墨烯纳米带的方法,其中所述方法包括图案化所述石墨烯膜,同时所述弯液面用作所述石墨烯膜的区域上方的掩模,并且其中所述图案化 导致从石墨烯膜的弯液面掩蔽区域形成石墨烯纳米带。 本公开的另外的实施例涉及从与弯液面相关联的膜制备线的方法,其中所述方法包括图案化所述膜,同时所述弯月面用作所述膜的区域上方的掩模,并且其中所述图案化导致形成 电线从弯月面掩盖的区域。 本公开的另外的实施方案涉及从水反应性材料制备电线的化学方法。

    BERNAL-STACKED GRAPHENE LAYERS AND METHODS OF MAKING THE SAME
    90.
    发明申请
    BERNAL-STACKED GRAPHENE LAYERS AND METHODS OF MAKING THE SAME 审中-公开
    伯氏堆积石墨层及其制造方法

    公开(公告)号:US20140178688A1

    公开(公告)日:2014-06-26

    申请号:US14104588

    申请日:2013-12-12

    IPC分类号: C01B31/04

    摘要: In some embodiments, the present disclosure pertains to methods of controllably forming Bernal-stacked graphene layers. In some embodiments, the methods comprise: (1) cleaning a surface of a catalyst; (2) annealing the surface of the catalyst; (3) applying a carbon source onto the cleaned and annealed surface of the catalyst in a reaction chamber; and (4) growing the Bernal-stacked graphene layers on the surface of the catalyst in the reaction chamber, where the number of formed Bernal-stacked graphene layers is controllable as a function of one or more growth parameters. Further embodiments of the present disclosure also include steps of: (5) terminating the growing step; and (6) transferring the formed Bernal-stacked graphene layers from the surface of the catalyst onto a substrate. Further embodiments of the present disclosure pertain to graphene films formed by the methods of the present disclosure.

    摘要翻译: 在一些实施例中,本公开涉及可控地形成伯纳尔堆叠的石墨烯层的方法。 在一些实施方案中,所述方法包括:(1)清洁催化剂的表面; (2)催化剂表面退火; (3)在反应室中将催化剂的清洁和退火的表面上施加碳源; 和(4)在反应室中的催化剂表面上生长Bernal层叠的石墨烯层,其中形成的Bernal堆叠的石墨烯层的数量作为一个或多个生长参数的函数是可控的。 本公开的另外的实施例还包括以下步骤:(5)终止生长步骤; 和(6)将形成的Bernal层叠的石墨烯层从催化剂的表面转移到基底上。 本公开的另外的实施方案涉及通过本公开的方法形成的石墨烯膜。