摘要:
A semiconductor integrated circuit device provided with a first circuit block BLK1, a second circuit block DRV1 and a conversion circuit MIO1 for connecting the first circuit block to the second circuit block. The first circuit block includes a first mode for applying a supply voltage and a second mode for shutting off the supply voltage. The conversion circuit is provided with a function for maintaining the potential of an input node of the second circuit block at an operation potential, thereby suppressing a penetrating current flow when the first circuit block is in the second mode. The conversion circuit (MIO1 to MIO4) are commonly used for connecting circuit blocks.
摘要:
There is provided a semiconductor integrated circuit device which consumes less power and enables real-time processing. The semiconductor integrated circuit device comprises: thermal sensors which can detect temperature, determine whether the detection result exceeds each of the above reference values and output the result; and a control block capable of controlling the operations of arithmetic blocks based on the output signals of the thermal sensors, wherein the control block returns to an operation state from a suspended state with an interrupt signal based on the output signals of the thermal sensors and determines the operation conditions of the arithmetic blocks to ensure that the temperature conditions of the arithmetic blocks are satisfied. Thereby, power consumption is reduced and real-time processing efficiency is improved.
摘要:
A semiconductor integrated circuit device provided with a first circuit block BLK1, a second circuit block DRV1 and a conversion circuit MIO1 for connecting the first circuit block to the second circuit block. The first circuit block includes a first mode for applying a supply voltage and a second mode for shutting off the supply voltage. The conversion circuit is provided with a function for maintaining the potential of an input node of the second circuit block at an operation potential, thereby suppressing a penetrating current flow when the first circuit block is in the second mode. The conversion circuit (MIO1 to MIO4) are commonly used for connecting circuit blocks.
摘要:
To enhance the speed of first access (read access different in word line from the previous access) to a multi-bank memory, multi-bank memory macro structures are used. Data are held in a sense amplifier for every memory bank. When access is hit to the held data, data latched by the sense amplifier are output to thereby enhance the speed of first access to the memory macro structures. Namely, each memory bank is made to function as a sense amplifier cache. To enhance the hit ratio of such a sense amplifier cache more greatly, an access controller self-prefetches the next address (an address to which a predetermined offset has been added) after access to a memory macro structure so that data in the self-prefetched address are preread by a sense amplifier in another memory bank.
摘要:
To enhance the speed of first access (read access different in word line from the previous access) to a multi-bank memory, multi-bank memory macro structures are used. Data are held in a sense amplifier for every memory bank. When access is hit to the held data, data latched by the sense amplifier are output to thereby enhance the speed of first access to the memory macro structures. Namely, each memory bank is made to function as a sense amplifier cache. To enhance the hit ratio of such a sense amplifier cache more greatly, an access controller self-prefetches the next address (an address to which a predetermined offset has been added) after access to a memory macro structure so that data in the self-prefetched address are preread by a sense amplifier in another memory bank.
摘要:
In an information processing apparatus involving a cache accessed by INDEX and TAG addresses, accesses to the main memory include many accesses attributable to the local character of referencing and write-back accesses attributable to the replacement of cache contents. Accordingly, high speed accessing requires efficient assignment of the two kinds of accesses to banks of the DRAM. In assigning request addresses from the CPU to different banks of the DRAM, bank addresses of the DRAM and generated by operation of the INDEX field and the TAG field so that local accesses whose INDEX varies and accesses at the time of writing back of which INDEX remains the same but TAG differs can be assigned to different banks. High speed accessing is made possible because accesses to the main memory can be assigned to separate banks. Furthermore, as reading and writing at the time of writing back can be assigned to a separate bank, pseudo dual-port accessing is made possible with only one port, resulting in higher speed write-back accessing.
摘要:
A semiconductor integrated circuit device is provided, the circuit being capable of arranging a control signal system, avoiding a danger of failure to check an indefinite signal propagation prevention circuit or the like, further facilitating a check oriented to mounting on an automated tool, and facilitating power shutdown control inside of a chip. In the semiconductor integrated circuit device, power shutdown priorities are provided by independent power domains Area A to Area I. A rule is provided, the rule defining that, in the case where a circuit having a high priority is turned ON, a power domain having its lower priority cannot be turned OFF, thereby facilitating a designing method. In addition, areas capable of applying still another power supply are provided in the independent power areas Area A to Area I. In that area, a relay buffer (repeater) and a clock buffer or an information retaining latch for saving information are integrated. A layout may be provided in a direction vertical to a direction in which cells are arranged in a row direction for the purpose of dispersing a current of a light supply line.
摘要:
A semiconductor device including a level converter (LSC) is disclosed. The level converter comprises a voltage-up circuit (LSC1) that operates on low voltage of power supply (VDD) and steps up voltage enough to drive the level converter and a level converter circuit (LSC2) that operates on high voltage of power supply (VDDQ). The voltage-up circuit is capable of constantly generating 2×VDD so that the level converter can convert a low voltage of power supply (VDD) below 1 V to VDDQ. This voltage-up circuit can be configured only with MOSFET transistors produced by thin oxide film deposition, thus enabling high-speed operation. To facilitate designing a circuit for preventing a leakage current from occurring in the level converter during sleep mode of a low-voltage-driven circuit (CB1), the level converter circuit (LSC2) includes a leak protection circuit (LPC) that exerts autonomous control for leak prevention, dispensing with external control signals.
摘要:
In a low power consumption mode in which prior data is retained upon power shutdown, the return speed thereof is increased. While use of an existent data retaining flip-flop may be considered, this is not preferred since it increases area overhead such as enlargement of the size of a cell. A power line for data retention for power shutdown is formed with wirings finer than a usual main power line. Preferably, power lines for a data retention circuit are considered as signal lines and wired by automatic placing and mounting. For this purpose, terminals for the power line for data retention are previously designed by providing the terminals therefor for the cell in the same manner as in the existent signal lines. Additional layout for power lines is no longer necessary for the cell, which enables a decrease in the area and design by an existent placing and routing tool.
摘要:
In a low power consumption mode in which prior data is retained upon power shutdown, the return speed thereof is increased. While use of an existent data retaining flip-flop may be considered, this is not preferred since it increases area overhead such as enlargement of the size of a cell. A power line for data retention for power shutdown is formed with wirings finer than a usual main power line. Preferably, power lines for a data retention circuit are considered as signal lines and wired by automatic placing and mounting. For this purpose, terminals for the power line for data retention are previously designed by providing the terminals therefor for the cell in the same manner as in the existent signal lines. Additional layout for power lines is no longer necessary for the cell, which enables a decrease in the area and design by an existent placing and routing tool.