摘要:
An apparatus or a method for detecting an abnormality of inter-cylinder air-fuel ratio dispersion in a multi-cylinder internal combustion engine according to the invention is equipped with a catalytic element that purifies exhaust gas of hydrogen, a first air-fuel ratio sensor that detects an air-fuel ratio of exhaust gas that has not passed through the catalytic element, a second air-fuel ratio sensor that detects an air-fuel ratio of exhaust gas that has passed through the catalytic element, a device that detects an abnormality of inter-cylinder air-fuel ratio dispersion on the basis of a divergence state of a detected value of a second air-fuel ratio to a lean side from a detected value of a first air-fuel ratio, and a device that forcibly reduces fuel injection amounts in cylinders individually when an abnormality on dispersion is detected by the abnormality detector, detects a divergence state of the detected value of the second air-fuel ratio to the lean side from the detected value of the first air-fuel ratio at this time, and specifies as an abnormal cylinder that one of the cylinders in which a value indicating this divergence state has become smaller than at a time of detection of the abnormality of dispersion.
摘要:
An abnormality diagnosis apparatus for an NOx catalyst of the present invention measures an index value (R) regarding an NOx clarification capacity of an NOx catalyst and determines an abnormality of the NOx catalyst based on index values (R1, R2) respectively measured at a timing (Tc1) at which the NOx catalyst has a relatively-low activation level and a timing (Tc2) at which the NOx catalyst has a relatively-high activation level. Since the index value at the timing at which the NOx catalyst has a relatively-low activation level (i.e., a timing at which the NOx catalyst originally does not have a sufficient NOx clarification capacity) is used, the abnormality diagnosis for the NOx catalyst can be carried out without intentionally deteriorating emission.
摘要:
A method of manufacturing a semiconductor device, includes 5 steps. The first step is a step of forming a floating gate on a first surface region of a semiconductor substrate through a gate insulating film. The second step is a step of forming a tunnel insulating film so as to cover a second surface region adjacent to the first surface region and an end portion of the floating gate. The third step is a step of forming an oxide film so as to cover the tunnel insulating film and be thicker at a portion above the second surface region than at a portion above the floating gate. The fourth step is a step of etching back the oxide film and a surface of the tunnel insulating film on the floating gate. The fifth step is a step of forming a control gate on the tunnel insulating film on the second surface region.
摘要:
A sealing valve 28 that controls a communication state between a fuel tank 10 and a canister 26 is provided. During stop of an internal combustion engine, the sealing valve 28 is generally closed, and the canister 26 is opened to the atmosphere. The sealing valve 28 is opened when the internal combustion engine is stopped, and differential pressure exceeding a valve opening determination value is generated between tank internal pressure and atmospheric pressure. A change in the tank internal pressure generated between before and after the sealing valve 28 is opened is detected. When the change in the tank internal pressure is below a predetermined determination value, closing failure of the sealing valve is determined.
摘要:
Disclosed is an evaporated fuel treatment device that includes a sealing valve installed between a fuel tank and a canister, a pump module pressure sensor for detecting the pressure on the canister side pressure, and a tank internal pressure sensor for detecting a tank internal pressure. Upon detection of a significant difference between the canister side pressure and tank internal pressure, the device concludes that no open failure exists in the sealing valve.
摘要:
A sealing valve 28 that controls a communication state between a fuel tank 10 and a canister 26 is provided. During stop of an internal combustion engine, the sealing valve 28 is generally closed, and the canister 26 is opened to the atmosphere. The sealing valve 28 is opened when the internal combustion engine is stopped, and differential pressure exceeding a valve opening determination value is generated between tank internal pressure and atmospheric pressure. A change in the tank internal pressure generated between before and after the sealing valve 28 is opened is detected. When the change in the tank internal pressure is below a predetermined determination value, closing failure of the sealing valve is determined.
摘要:
The emission control system of the present invention removes the small amounts of polluting gases released from various parts of the automobile. These polluting gases are released from, for example, fuel oozing out from connections of the pipes in the fuel system, lubricating oil oozing out from engine body, and solvents and adhesives remaining in the interior and exterior parts of the automobile. In the emission control system of the present invention, collectors and suction pipes are provided. The collectors are disposed at the parts of the automobile from where the polluting gases are released in such a manner that the collectors enclose these parts. The suction pipes connect the respective collectors to an intake nose of an air cleaner disposed in an intake air passage of the engine. Therefore, the polluting gases released from various parts of the automobile are drawn into the engine through the respective suction pipes before they diffuse into the atmosphere, and are burned in the engine. Thus, according to the present invention, the polluting gases released from various parts of the automobile are prevented from diffusing into the atmosphere.
摘要:
A fuel tank for an automobile has a separator film to separate the inside of a fuel storage container of the fuel storing device into a fuel storage part and a space. The separator film is movable with a surface of liquid fuel in the fuel storage part. A filler pipe is connected to the fuel storage part. The filler pipe has a nozzle seal that seals a gap with respect to a refueling nozzle inserted into the filler pipe. A conduit communicates a part of the filler pipe adjacent to the nozzle seal with an upper part of the fuel storage part. A closure preventing means prevents the separator film from closing an opening of the conduit at the upper part of the fuel storage part. The closure preventing means prevents a negative pressure from being produced around the refueling nozzle before the fuel storage container is fully filled with fuel. When the refueling nozzle has an automatic stopper, the closure preventing means lets the automatic stopper stop the supply of fuel in response to a negative pressure only after the fuel storage container is fully filled with fuel.
摘要:
A fuel storing device for an automobile comprises a flexible separator means disposed in a fuel storage container for separating the inside of the fuel storage container into a fuel storage portion and a space portion and a fuel vapor preventing means for preventing fuel vapor from gathering in a space between a surface of fuel and said separator means. The fuel vapor preventing means introduces fuel vapor which appears over a surface of liquid fuel into a vapor draining pipe.
摘要:
A malfunction detection apparatus for detecting a malfunction in an evaporative fuel purge system, which malfunction detection apparatus is able to suppress a fluctuation of an air-fuel ratio. A negative pressure inside an intake passage is introduced into the evaporative fuel purge system. The existence/nonexistence of a malfunction in the evaporative fuel purge system is determined by using pressure values inside the evaporative fuel purge system which values are detected and supplied by a pressure detecting unit. The apparatus is provided with an air-fuel ratio fluctuation suppressing unit for suppressing a fluctuation of the air-fuel ratio of air suctioned into an engine when introducing the negative pressure into the evaporative fuel purge system.