Abstract:
A nonvolatile charge trap memory device with deuterium passivation of charge traps and method of manufacture. Deuterated gate layer, deuterated gate cap layer and deuterated spacers are employed in various combinations to encapsulate the device with deuterium sources proximate to the interfaces within the gate stack and on the surface of the gate stack where traps may be present.
Abstract:
Embodiments of a non-planar memory device including a split charge-trapping region and methods of forming the same are described. Generally, the device comprises: a channel formed from a thin film of semiconducting material overlying a surface on a substrate connecting a source and a drain of the memory device; a tunnel oxide overlying the channel; a split charge-trapping region overlying the tunnel oxide, the split charge-trapping region including a bottom charge-trapping layer comprising a nitride closer to the tunnel oxide, and a top charge-trapping layer, wherein the bottom charge-trapping layer is separated from the top charge-trapping layer by a thin anti-tunneling layer comprising an oxide. Other embodiments are also disclosed.
Abstract:
Embodiments of structures and methods for determining operating characteristics of a non-volatile memory transistor comprising a charge-storage-layer and a tunneling-layer are described. In one embodiment, the method comprises: forming on a substrate a structure including a nitrided tunneling-layer and a charge-storage-layer overlying the tunneling-layer comprising a first charge-storage layer adjacent to the tunneling-layer, and a second charge-storage layer overlying the first charge-storage layer, wherein the first charge-storage layer is separated from the second charge-storage layer by a anti-tunneling layer comprising an oxide; depositing a positive charge on the charge-storage-layer and determining a first voltage to establish a first leakage current through the charge-storage-layer and the tunneling-layer; depositing a negative charge on the charge-storage-layer and determining a second voltage to establish a second leakage current through the charge-storage-layer and the tunneling-layer; and determining a differential voltage by calculating a difference between the first and second voltages.
Abstract:
A nonvolatile charge trap memory device with deuterium passivation of charge traps and method of manufacture. Deuterated gate layer, deuterated gate cap layer and deuterated spacers are employed in various combinations to encapsulate the device with deuterium sources proximate to the interfaces within the gate stack and on the surface of the gate stack where traps may be present.
Abstract:
A method of making a semiconductor structure, comprises cleaning a gate stack with a cleaning solution. The gate stack comprises a gate layer, a metallic layer on the gate layer, and a etch-stop layer on the metallic layer. The gate layer is on a semiconductor substrate, the cleaning solution is a non-oxidizing cleaning solution, and the metallic layer comprises an easily oxidized metal.
Abstract:
A method of making a semiconductor structure comprises forming an oxide layer on a substrate; forming a silicon nitride layer on the oxide layer; annealing the layers in NO; and annealing the layers in ammonia. The equivalent oxide thickness of the oxide layer and the silicon nitride layer together is at most 25 Angstroms.
Abstract:
A semiconductor topography is provided which includes a silicon dioxide layer with a thickness equal to or less than approximately 10 angstroms and a silicon nitride layer arranged upon the silicon dioxide layer. In addition, a method is provided which includes growing an oxide film upon a semiconductor topography in the presence of an ozonated substance and depositing a silicon nitride film upon the oxide film. In some embodiments, the method may include growing the oxide film in a first chamber at a first temperature and transferring the semiconductor topography from the first chamber to a second chamber while the semiconductor topography is exposed to a substantially similar temperature as the first temperature. In either embodiment, the method may be used to form a semiconductor device including an oxide-nitride gate dielectric having an electrical equivalent oxide gate dielectric thickness of less than approximately 20 angstroms.
Abstract:
A method of forming oxide-nitride-oxide (ONO) dielectric of a SONOS-type nonvolatile storage device is disclosed. According to a first embodiment, a method may include the steps of forming a tunneling dielectric (step 102), forming a charge storing dielectric (step 104), and forming a top insulating layer (step 106) all in the same wafer processing tool. According to various aspects of the embodiments, all layers of an ONO dielectric of a SONOS-type device may be formed in the same general temperature range. Further, a tunneling dielectric may include a tunnel oxide formed with a long, low pressure oxidation, and a top insulating layer may include silicon dioxide formed with a preheated source gas.
Abstract:
In one embodiment, a transistor comprises raised structures over a source region and a drain region. The raised source structures may comprise selectively deposited metal, such as selective tungsten. A self-aligned contact structure formed through a dielectric layer may provide an electrical connection between an overlying structure (e.g., an interconnect line) and the source or drain region. The transistor may further comprise a gate stack having a capping layer over a metal.
Abstract:
In one embodiment, a passivation level includes a low-k dielectric. The low-k dielectric helps lower the capacitance of a metal line in a last metal level, which may be just below the passivation level. In another embodiment, the metal line is relatively thick. This helps lower the metal line's resistance and resulting RC delay.