Abstract:
A method of measuring interference to perform efficient data communication is disclosed. A method of measuring interference of neighboring cells comprises allocating one or more first resource elements, to which pilot signals are allocated, to predetermined symbol regions included in a first resource block; allocating one or more second resource elements for measuring interference of the neighboring cells to a first symbol region of the predetermined symbol regions; and measuring interference of the neighboring cells using the one or more second resource elements.
Abstract:
According to one embodiment, a method for transmitting, by a user equipment (UE), information in a wireless communication system includes: determining a first information sequence based on a first cyclically shifted base sequence and a first orthogonal sequence by using a first physical uplink control channel (PUCCH) resource for a first antenna, wherein the first PUCCH resource is obtained based on a channel control element (CCE) index related to a physical downlink control channel (PDCCH) and a parameter configured by a higher layer; determining a second information sequence based on a second cyclically shifted base sequence and a second orthogonal sequence by using a second PUCCH resource for a second antenna, wherein the second PUCCH resource is obtained by adding an offset to the first PUCCH resource; transmitting the first information sequence via the first antenna; and transmitting the second information sequence via the second antenna.
Abstract:
A method for transmitting a demodulation reference signal (DMRS) for a physical uplink shared channel (PUSCH), by a user equipment (UE), in a wireless communication system. The UE generates first, second, and third DMRS sequences, which are associated with first, second, and third layers respectively, by applying first, second, and third cyclic shifts to the first, second, and third DMRS sequences respectively. The UE transmits the first, second, and third DMRS sequences to a base station, wherein the first, second, and third cyclic shifts are determined based on first, second, and third cyclic shift values respectively. The first and second cyclic shift values are separated from each other by a maximum separation value, which is determined based on a total number of cyclic shifts. The third cyclic shift value is determined by increasing cyclically by a median separation value between the first and second cyclic shift values.
Abstract:
A method and apparatus for multiplexing reference signals in a predetermined number of Code Division Multiplexing (CDM) groups to balance power across Orthogonal Frequency Division Multiplexing (OFDM) symbols are disclosed. In a wireless communication system, orthogonal sequences used for spreading the reference signals are allocated such that the order of orthogonal sequences allocated to a subcarrier of one CDM group has a predetermined offset with respect to the order of orthogonal sequences allocated to a subcarrier of another CDM group, adjacent to the subcarrier of the one CDM group.
Abstract:
The present invention relates to a method for transmitting a data demodulation reference signal in a radio mobile communication system. The method comprises: a step for generating a sub-frame including the data demodulation reference signal, and a step for transmitting the generated sub-frame. The 1st and 2nd demodulation reference signal pattern groups include plural demodulation signal patterns orthogonal to each other, and are differentiated from each other with regard to time-frequency resources. In the data demodulation reference signal, demodulation reference signal patterns which are respectively orthogonal to each other M (M≦N) and N−M times are respectively included in the 1st and 2nd demodulation reference signal pattern groups if the rank is N.
Abstract:
A method is provided for transmitting, by a user equipment (UE), a demodulation reference signal (DMRS) for a physical uplink shared channel (PUSCH) in a wireless communication system. First, second, and third DMRS sequences associated with first, second, and third layers respectively are generated. First, second, and third cyclic shifts are allocated to the first, second, and third DMRS sequences respectively, The first, second, and third DMRS sequences are transmitted to a base station. The first, second, and third cyclic shifts are respectively determined based on first, second and third cyclic shift values, which are indicated by a cyclic shift field in downlink control information (DCI) received through a physical downlink control channel (PDCCH). The first and second cyclic shift values are separated by a maximum separation value corresponding to a total number of cyclic shifts and being determined for transmission of DMRS signal in the system using four layers.
Abstract:
A method of transmitting, by a transmitter, information in a wireless communication system, the method includes generating first and second symbols; generating first and second transmit vectors on the basis of an Alamouti code from the first and second symbols; and transmitting the first transmit vector through a first antenna and transmitting the second transmit vector through a second antenna. The first transmit vector consists of a first transmit symbol and a second transmit symbol. The second transmit vector consists of a third transmit symbol and a fourth transmit symbol. The first, second, third, and fourth transmit symbols are transmitted based on first and second resource indexes. The first symbol is a first modulation symbol for first information, and the second symbol is a second modulation symbol for second information.
Abstract:
A method and base station for receiving a reference signal in a wireless communication system are discussed. The method according to one embodiment includes transmitting a cell-specific group hopping parameter to a plurality of user equipments (UEs). The cell-specific group hopping parameter is used to disable a group hopping. The method according to the embodiment further includes transmitting a cell-specific sequence hopping parameter to the plurality of UEs. The cell-specific sequence hopping parameter is used to enable a sequence hopping. The method according to the embodiment further includes transmitting a UE-specific sequence group hopping (SGH) parameter to a certain UE. The UE-specific SGH parameter is used to disable the sequence hopping. The method according to the embodiment further includes receiving a reference signal, which is generated based on a base sequence number. The base sequence number within the base sequence group is determined by the UE-specific SGH parameter.
Abstract:
According to one embodiment, a method for transmitting, by a user equipment (UE), information in a wireless communication system includes: determining a first information sequence based on a first cyclically shifted base sequence and a first orthogonal sequence by using a first physical uplink control channel (PUCCH) resource for a first antenna, wherein the first PUCCH resource is obtained based on a channel control element (CCE) index related to a physical downlink control channel (PDCCH) and a parameter configured by a higher layer; determining a second information sequence based on a second cyclically shifted base sequence and a second orthogonal sequence by using a second PUCCH resource for a second antenna, wherein the second PUCCH resource is obtained by adding an offset to the first PUCCH resource; transmitting the first information sequence via the first antenna; and transmitting the second information sequence via the second antenna.
Abstract:
A base station does not transmit any reference signal (RS) for channel measurement in a subframe in which transmission of an RS collides with transmission of a synchronization signal or a broadcast signal or in a resource block including the synchronization signal or the broadcast signal in the subframe. A user equipment assumes that any RS for channel measurement is not transmitted in a subframe or in a resource block when transmission of an RS collides with transmission of a synchronization signal or a broadcast signal in the subframe or in the resource block.