摘要:
A process for the preparation of a fluoroiodoalkane represented by the structural formula CF3(CF2)n—I, wherein n is 0 or 1. The process has the step of reacting a source of iodine with a compound represented by the structural formula CF3(CF2)n—Y, wherein Y is selected from H, Cl, Br and COOH and wherein n is 0 or 1. The reaction is carried out at a temperature from about 100° C. to about 750° C. and at a pressure from about 0.001 to about 100 atm for a contact time from about 0.001 second to about 300 hours in the presence a catalyst. The catalyst is subject to one or both of the following: (a) treating the catalyst prior to the reaction via contact with a gas selected from the group consisting of hydrogen fluoride, trifluoromethane, hydrogen, hydrogen iodide, iodine, fluorine, and oxygen, wherein the contact is carried out at a temperature and for a contact time sufficient to reduce the length of the induction period of the catalyst; and (b) treating the catalyst after the reaction via contact with a gas selected from the group consisting of hydrogen fluoride, hydrogen, fluorine, oxygen, or air at a temperature and for a contact time sufficient to regenerate the catalyst.
摘要:
There is provided methods for making a catalyst composition represented by the formula MX/M′F2 wherein MX is an alkali metal halide; M is an alkali metal ion selected from the group consisting of Li+, Na+, K+, Rb+, and Cs+; X is a halogen ion selected from the group consisting of F−, Cl−, Br−, and I−; M′F2 is a bivalent metal fluoride; and M′ is a bivalent metal ion. There is also a method for making a fluorinated olefin.
摘要:
Disclosed is a fully integrated process for making 1,1,1,3,3-pentafluoropropane (HFC-245fa), trans-1-chloro-3,3,3-trifluoropropene (HCFO-1233zd(E)), and trans-1,3,3,3-tetrafluoropropene (HFO-1234ze(E)). The chemistry involves (a) the reaction of 1,1,1,3,3-pentachloropropane (HCC-240fa), or a derivative thereof selected from 1,1,3,3-tetrachloropropene and 1,3,3,3-tetrachloropropene, with anhydrous HF in excess in the presence of a catalyst in a liquid-phase reactor in such a way as to co-produce HCFO-1233zd, HFO-1234ze, HCFC-244fa (3-chloro-1,1,1,3-tetrafluoropropane), and HFC-245fa in a first reactor; (b) the reaction of HCFO-1233zd and HFO-1234ze with HCl in excess in the presence of a catalyst in a second reactor to convert these two olefins into HCFC-243fa and HCFC-244fa, respectively; (c) the reaction of HCFC-243fa and HCFC-244fa over a dehydrochlorination catalyst or in a caustic solution in a third reactor to form HCFO-1233zd and HFO-1234ze; and (d) the reaction of HCFO-1233zd(Z) and HFO-1234ze(Z) in the presence of a catalyst in a fourth reactor to form trans-1233zd and trans-1234ze, respectively.
摘要:
The disclosed integrated manufacturing process includes a combined liquid phase reaction and purification operation which directly produces trans-1-chloro-3,3,3-trifluoropropene and 3-chloro-1,1,1,3-tetrafluoropropane which is a precursor to the manufacture of trans-1,3,3,3-tetrafluoropropene. The mixture of co-products is easily separated by conventional distillation and 3-chloro-1,1,1,3-tetrafluoropropane is then dehydrochlorinated to produce trans-1,3,3,3-tetrafluoropropene by contacting in the liquid phase with a caustic solution or in the vapor phase using a dehydrochlorination catalyst.
摘要:
The present invention provides a method for separating halocarbons. In particular, the invention provides a method for separating halogenated olefin impurities from 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) using a solid adsorbent, particularly activated carbon. More particularly the invention pertains to a method for separating 2-chloro-3,3,3-trifluoro-propene (HCFO-1233xf) from HCFC-244bb, which are useful as intermediates in the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf).
摘要:
Trans-1233zd, the trans-isomer of 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd) can be used as blowing agents, solvents, cleaning agents, as well as monomers of macromolecule compounds, and can be prepared through the dehydrochlorination of 1,1,1-trifluoro-3,3-dichloropropane (HCFC-243fa) with the help of a catalyst. The present invention is directed to an integrated process is proposed to produce trans-1233zd from 243fa, which is consisted of the following four major unit operations: (1) Catalytic dehydrochlorination of 243fa into trans/cis-1233zd, (2) HCl recovery, (3) Catalytic isomerization of cis-1233zd into trans-1233zzd, and (4) Isolation of trans-1233zd.
摘要:
This invention achieves a catalyst life improvement for the catalyzed vapor phase reaction of 1,1,1,3,3-pentachloropropane with hydrogen fluoride to form 1-chloro-3,3,3-trifluoropropene by introducing an oxygen co-feed into the fluorination reactor. By introduction of an oxygen co-feed to the reactor feed, the catalyst life was extended a minimum of two-fold (2×).
摘要:
Disclosed is an integrated manufacturing process to co-produce (E)1-chloro-3,3,3-trifluoropropene, (E)1,3,3,3-tetrafluoropropene, and 1,1,1,3,3-pentafluoro-propane starting from a single chlorinated hydrocarbon feed stock, 240fa. The process includes a combined liquid or vapor phase reaction/purification operation which directly produces (E)1-chloro-3,3,3-trifluoropropene (1233zd(E)) from 240fa. In the second liquid phase fluorination reactor 1233zd(E) is contacted with HF in the presence of catalyst to produce 1,1,1,3,3-pentafluoropropane (245fa) with high conversion and selectivity. A third reactor is used for dehydrofluorination of 245fa to produce (E)1,3,3,3-tetrafluoropropene (1234ze(E)) by contacting in the liquid phase with a caustic solution or in the vapor phase using a dehydrofluorination catalyst. This operation may be followed by one or more purification processes to recover the 1234ze(E) product.
摘要:
Dehydrohalogenation processes for the preparation of fluoropropenes from corresponding halopropanes, in which the fluoropropenes have the formula CF3CY═CXNHP, wherein X and Y are independently hydrogen or a halogen selected from fluorine, chlorine, bromine and iodine; and N and P are independently integers equal to 0, 1 or 2, provided that (N+P)=2.
摘要翻译:用于从相应的卤代丙烷制备氟丙烯的脱卤化氢方法,其中氟丙烯具有式CF 3 C Y = C X N H P,其中X和Y独立地是氢或选自氟,氯,溴和碘的卤素; 并且N和P独立地为等于0,1或2的整数,条件是(N + P)= 2。