摘要:
An amorphous carbon layer of an antireflective bi-layer hardmask is processed to increase its density prior to patterning of an underlying polysilicon layer using the bi-layer hardmask. The increased density of the layer increases its resistance to polysilicon etch chemistry, thus reducing the likelihood of patterning inaccuracies resulting from amorphous carbon depletion during polysilicon etch, and enabling the patterning of thicker polysilicon layers than can be reliably patterned without densification. The increased density also reduces stresses, thus reducing the likelihood of delamination. Densification may be performed by UV or e-beam irradiation after formation of an overlying protective layer. Densification may also be performed by annealing the amorphous carbon layer in situ prior to formation of the overlying protective layer. In the latter case, annealing reduces the amount of outgassing that occurs during formation of the protective layer, thus reducing the formation of pin holes.
摘要:
The degradation of deposited low dielectric constant interlayer dielectrics and gap fill layers, such as HSQ layers, during formation of contacts/vias is significantly reduced or prevented by employing a plasma containing CF4+H2O to remove the photoresist mask and cleaning the contact/via opening after anisotropic etching. The CF4+H2O plasma also enables rapid photoresist stripping at a rate of about 10 to about 20 KÅ/min. Embodiments include photoresist stripping and cleaning the contact/via opening with a CF4+H2O plasma to prevent reduction of the number of Si—H bonds of an as-deposited HSQ layer below about 70%.
摘要翻译:通过使用含有CF 4 + H 2 O的等离子体去除光致抗蚀剂掩模并清洁接触/通孔,显着降低或防止沉积的低介电常数层间电介质和间隙填充层(例如HSQ层)在形成接触/通孔期间的劣化 各向异性蚀刻后。 CF4 + H2O等离子体还可以以约10至约20K埃/分钟的速率快速地进行光致抗蚀剂剥离。 实施方案包括光致抗蚀剂剥离和用CF 4 + H 2 O等离子体清洁接触/通孔开口,以防止沉积的HSQ层的Si-H键的数量降低到约70%以下。
摘要:
A method for an integrated circuit includes the use of an amorphous carbon ARC mask. A layer of amorphous carbon material is deposited above a layer of conductive material, and a layer of anti-reflective coating (ARC) material is deposited over the layer of amorphous carbon material. The layer of amorphous carbon material and the layer of ARC material are etched to form a mask comprising an ARC material portion and an amorphous carbon portion. A feature may then be formed in the layer of conductive material by etching the layer of conductive material in accordance with the mask.
摘要:
A method of fabricating an integrated circuit can include forming a laminated conductive line. The laminated conductive line can be formed in a dielectric trench. The laminated conductive line can include alternating barrier layers and copper layers. An integrated circuit includes at least one interconnect layer, the interconnect layer including a number of conductive lines. Each of the conductive lines includes a first thin barrier layer, a first thin copper layer, a second thin barrier layer and a second thin copper layer. The layered or laminated structure can reduce unconstrained void formation.
摘要:
Degradation of organic-doped silica glass low-k inter-layer dielectrics during fabrication is significantly reduced and resolution of submicron features is improved by the formation of dual nature capping/ARC layers on inter-layer dielectric films. The capping/ARC layer is formed in-situ on the organic-doped silica glass inter-layer dielectric. The in-situ formation of the capping/ARC layer provides a strongly adhered capping/ARC layer, formed with fewer processing steps than conventional capping and ARC layers.
摘要:
A strong interface is formed between an interconnect and an encapsulating layer to prevent the lateral drift of material from the interconnect along the bottom of the encapsulating layer. Diffusion barrier material is deposited on the top surface of the interconnect using a selective deposition process. The diffusion barrier material may be epitaxially grown from the interconnect during the selective deposition of the diffusion barrier material on the top surface of the interconnect to promote adhesion of the diffusion barrier material to the interconnect. An encapsulating layer is deposited on top of the diffusion barrier material. The diffusion barrier material and the encapsulating layer are comprised of a similar chemical element to promote adhesion of the diffusion barrier material to the encapsulating layer. The diffusion barrier material on the top surface of the interconnect prevents lateral drift of material comprising the interconnect along the encapsulating layer. When the layer of encapsulating dielectric is comprised of silicon nitride, a nitrided surface may be formed on top of the diffusion barrier material by exposing the top of the diffusion barrier material to nitrogen plasma before depositing the encapsulating layer of silicon nitride on top of the diffusion barrier material. The present invention may be used to particular advantage when the interconnect is a copper interconnect and when the layer of encapsulating layer is comprised of silicon nitride.
摘要:
Strong adhesion to doped low-k inter-layer dielectrics is provided by varying the composition of dopant near the surface layers of the inter-layer dielectric. The concentration of dopant is gradually increased from about zero atomic % at the interface between the inter-layer dielectric and semiconductor substrate to improve adhesion of the inter-layer dielectric to the semiconductor substrate. The concentration of dopant at the upper surface of the inter-layer dielectric is gradually decreased to about zero atomic % at the upper surface of the inter-layer dielectric film in order to improve adhesion of additional layers to the inter-layer dielectric.
摘要:
In a first aspect of the present invention, a semiconductor device is disclosed. The semiconductor device comprises at least two gate stacks, each gate stack having two sides and oxide spacers on each of the two sides of each of the at least two gate stacks, wherein at least one of the oxide spacers is triangular shaped. In a second aspect of the present invention, a method and system for processing a semiconductor device is disclosed. The method and system for processing a semiconductor comprise forming at least two gate stacks over a semiconductor substrate, depositing an oxide layer over the at least two gate stacks, and etching the oxide layer to form at least one oxide spacer in between the at least two gate stacks, wherein the at least one oxide spacer is triangular shape. Through the use the present invention, the voids that are created in the semiconductor device during conventional semiconductor processing are eliminated. This is accomplished by creating oxide spacers having a triangular shape when etching the oxide layer to form the oxide spacer. By creating a triangular shaped oxide spacer, subsequent layers of material can be deposited over the oxide spacer without creating voids in the semiconductor device. Accordingly, as a result of the use of the present invention, the oxide spacers are strengthened, which increases the reliability of the semiconductor device.
摘要:
The present invention is a method and system for eliminating voids in a semiconductor device. The method comprises the steps of forming metal lines over a semiconductor substrate, forming a first oxide layer utilizing a high density plasma deposition technique, forming a second oxide layer utilizing a carbon free resin and forming a topside dielectric layer. Through the use of a method in accordance with the present invention, the voids that are created in the dielectric films during conventional semiconductor processing methodology are eliminated. The use of a high density plasma deposition technique provides a more directional deposition that can get between metal lines that are separated by smaller gaps. The dielectric films are thereby strengthened, which increases the reliability of the semiconductor device. Furthermore, by utilizing hydrogen silsesquiloxane instead of a conventional spin-on glass, there is no concern regarding carbon contamination since hydrogen silsesquiloxane doesn't contain carbon atoms.
摘要:
This invention describes improved apparatus and methods for spin-on deposition of semiconductor thin films. The improved apparatus provides for controlled temperature, pressure and gas compositions within the deposition chamber. The improved methods comprise dispensing of solutions containing thin film precursor via a moveable dispensing device and the careful regulation of the pattern of deposition of the precursor solution onto the wafer. The invention also comprises the careful regulation of deposition variables including dispensation time, wafer rpm, stop time and rates of wafer rotation. In one embodiment, the precursor solution is dispensed from the outer edge of the wafer toward the center. In alternative embodiments, processors regulate the movement of the dispensing arm and the precursor pump to provide an evenly dispensed layer of precursor solution. The invention also describes improved methods for evaporating solvents and curing thin films. The methods of this invention enable the production of spin-on thin films, which have more even film thickness and uniformity. The semiconductor thin films produced by the methods of this invention are useful for the manufacture of semiconductor devices comprising interlevel dielectric materials.