Abstract:
A method for a receiver to cancel or suppress co-channel interference with network assistance is provided. The method comprises deriving a first set of parameters related to interfering signals in a mobile communication network; receiving a second set of parameters related to the interfering signals from the network; and cancelling the contribution of interfering signals from the received signal based on the combination of the first set and second set of parameters. In one embodiment, scrambling rules and resource block allocation information are signaled to the victim UE to facilitate Codeword-Level Interference Cancellation (CWIC). While the scrambling rule for control channel is based on UE-specific identity, the scrambling rule for data channel is based on cell-specific identity or other network-configurable identity to facilitate CWIC. In addition, RA-allocation information are signaled to the victim UE in an efficient way.
Abstract:
A method to allocate physical radio resources for both distributed and localized transmission schemes of ePDCCH and configure common and UE-specific search space for UE is provided. In one embodiment, a UE receives a first high-layer information to determine a first set of PRBs. The UE determines a first set of candidate ePDCCHs within the first set of PRBs, wherein one or more candidate ePDCCHs potentially carries DCI intended for the UE. The UE then decodes the first set of candidate ePDCCHs to obtain the DCI intended for the UE. Similar steps are performed for a second set of candidate ePDCCHs potentially carrying DCI intended for the UE. The allocated radio resources of the candidate ePDCCHs may be distributed or localized and constitute either common or UE-specific search space. Blind decoding complexity is reduced.
Abstract:
A new air interface that is interference cancellation friendly is proposed. In one novel aspect, addition information is provided between eNB and UE for interference cancellation. From eNB perspective, it provides assistance information to UEs for CWIC. The assistance information may include modulation order and code rate information of the PDSCH for data transmission that may cause interference to other UEs. From UE perspective, it provides feedback information to the eNB for MCS level assignment. The feedback information may include additional channel quality and interference condition information of a data transmission of a desired transport block with respect to the decoding of the desired transport block.
Abstract:
Methods of multi-point carrier aggregation configuration and data forwarding are disclosed. In one embodiment of the invention, a primary connection is established between a UE and a primary base station in a primary cell with a first UE-ID. A second connection is configured between the UE and a second base station in a secondary cell with a second UE-ID. Component carriers from the primary and the second connections are configured and aggregated. Mobility management functions are performed on the primary connection. In another embodiment of the current invention, a first UE data is received from a primary connection with a UE connecting to a first base station, a second UE data is received from a second base station. The first UE data and the second UE data are combined. A third UE data from a network entity is distributed to the first and the second base station.
Abstract:
A method of modulating and demodulating superposed signals for MUST scheme is proposed. A transmitter takes bit sequences intended for multiple receivers under MUST scheme to go through a “bit sequence to constellation points” mapper before entering the modulators to satisfy the Gray coding rule and to achieve high demodulation performance for the receivers. In a first method, each bit sequence is assigned for each constellation point on the constellation map to satisfy one or more conditions under different power split factors. In a second method, the constellation map is divided into sub-regions according to the clustering of the constellation points for bit sequence assignment. A near-UE may use an ML receiver for demodulation and decoding the superposed signal. A far-UE may use an ML receiver or an MMSE receiver for demodulation and decoding the superposed signal.
Abstract:
Methods of enabling multiuser superposition transmission (MUST) in LTE systems are proposed. MUST operation allows simultaneous transmission for multiple co-channel users on the same time-frequency resources. A higher-layer signaling is used for configuring a UE to enable MUST in each transmission mode (TM). MUST is a sub-TM of each TM. When a UE is configured by higher layer to enable MUST, the UE will monitor new DCI formats supported by the configured TM with new fields carrying scheduling information of another co-channel UE. Dynamic switching between MUST and non-MUST operation is allowed. Mixed transmission schemes and precoders among co-channel UEs are also supported.
Abstract:
Periodic Radio Resource Management (RRM) reporting from user equipments (UEs) is beneficial for a network to efficiently select a carrier with a cleaner channel to serve the UEs. To enable periodic RRM reporting from UEs, periodic beacon signal transmission for UE measurements is necessary. However, in a shared spectrum, precise periodic transmission cannot be guaranteed due to channel contention. A method of transmission with periodic time windows for beacon signal transmission is proposed to resolve potential issues. Under the proposed solution, beacon signal can be transmitted in a certain periodic fashion without frequent physical layer signaling. Furthermore, periodic beacon signal transmission for measurements can be kept with low transmission failure rate due to channel contention.
Abstract:
Methods and apparatus are provided for improved Licensed Assisted Access (LAA) networks. A LAA subframe is received via an unlicensed frequency band. Control information is communicated via predetermined symbol locations within the LAA subframe. An indication of a first and a second symbol locations is received. A LAA subframe is then received. It is determined if control information is present at the first or second symbol locations within the received LAA subframe. Demodulation parameters based on the control information are determined. The LAA subframe is demodulated using the demodulation parameters. An indication of a transmission duration is communicated to a UE. The transmission duration is determined based on the LAA subframe. A type of subframe is determined based on transmission duration. Automatic Gain Control (AGC) protection is provided in a LAA subframe. The AGC protection LLA subframe does not communicate control information in a symbol adjacent to a reservation signal.
Abstract:
Methods and apparatus are provided for Msg3 collision resolutions. In one embodiment, the UE obtains a set of DMRS seeds and randomly selecting one to generate a DMRS sequence for the Msg3. The set of DMRS seeds is either generated based on a received cell-specific parameter or are received from the network. In another embodiment, the eNB, upon detecting the collision in Msg3, indicates a lowered MCS level for the Msg3 transmission in the RAR after the preamble detection. In another embodiment, the early termination of Msg3 transmission is used upon determining the collision of Msg3. In one embodiment, the eNB responds an ACK to a failed Msg3 to suspend the re-transmission of the Msg3. In another embodiment, the eNB sends a flag to cancel the mac-ContentionResolutionTimer and terminate the Msg3 transmission. The termination indication is either embedded in the acknowledgement signaling or sent through PDCCH signaling.
Abstract:
Systems and Methods for supporting carrier aggregation with different TDD configurations are proposed. In a first novel aspect, corresponding apparatus structure is described. In a second novel aspect, aggregation constraint is discussed. In a third novel aspect, transceiving mechanisms over multiple component carriers in DL/UL overlapped subframes are proposed. For simultaneous DL/UL transceiving, band combination indication methods are proposed, and HARQ feedback mechanisms are proposed. For non-simultaneous DL/UL transceiving, transceiving configuration methods are proposed, and the same HARQ feedback mechanisms are proposed. In a fourth novel aspect, CQI/RLM/RRM measurement mechanisms are proposed. In a fifth novel aspect, UE capability signaling mechanisms are proposed. The objective is to support flexible aggregation, to enhance DL data throughout, and to improve UL transmit power efficiency.