Abstract:
The present invention relates to efficient organic light emitting devices (OLEDs), and more specifically to organic materials used in such devices. More specifically, the present invention relates to materials with improved stability and efficiency when incorporated into an OLED.
Abstract:
An organic light emitting device having an anode, a cathode and an organic layer disposed between the anode and the cathode is provided. In one aspect, the organic layer comprises a compound having at least one zwitterionic carbon donor ligand. In another aspect, the organic layer comprises a carbene compound, including the following: In another aspect, the organic layer comprises a carbene compound, including: In another aspect, the organic layer comprises a carbene compound that includes a triazole ring and has the structure: In another aspect, the organic layer comprises a carbene compound that includes a tetrazole ring and has the structure:
Abstract:
The present invention provides for organometallic and organic dopants suitable for use in organic carrier transporting materials. Also provided are organic light emitting devices containing doped organic carrier transporting materials.
Abstract:
Emissive phosphorescent organometallic compounds are described that produce improved electroluminescence, particularly in the blue region of the visible spectrum. Organic light emitting devices employing such emissive phosphorescent organometallic compounds are also described. Also described is an organic light emitting layer including a host material having a lowest triplet excited state having a decay rate of less than about 1 per second; a guest material dispersed in the host material, the guest material having a lowest triplet excited state having a radiative decay rate of greater than about 1×105 or about 1×106 per second and wherein the energy level of the lowest triplet excited state of the host material is lower than the energy level of the lowest triplet excited state of the guest material.
Abstract:
The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photovoltaic devices, e.g., organic solar cells. More specifically, it is directed to organic photosensitive optoelectronic devices that comprise a cyclometallated organometallic compound as a light absorbing material.
Abstract:
A guard for a grass trimming device having a support member slidably connected to the shaft of the grass trimming device, a flexible guard member connected to and extending outwardly from the support member, and a means for adjusting the distance between the guard member and the shaft.
Abstract:
The present invention provides an organic light emitting device comprising an anode, a cathode, and an organic layer disposed between the anode and the cathode, wherein the organic layer comprises a host material, an alkali metal or an alkaline earth metal, and a metal binding agent. In a preferred embodiment, the organic layer is an electron transport layer in which the metal binding agent may confine the alkali metal or the alkaline earth metal.
Abstract:
A method of transferring funds from a sender to a recipient includes receiving, at a transfer location, a transfer request from the sender. The transfer request includes a notification request to notify the sender when the recipient receives the funds. The method also includes sending the transfer request to a host computer system, receiving, at a transfer location, a request from the recipient to receive the funds, receiving a message at the host computer system that the recipient received the funds, and sending from the host computer system a notification to the sender that the recipient received the funds.
Abstract:
A device is provided, having an anode, a cathode, and a first organic layer disposed between the anode and the cathode. The first organic layer comprises a material that produces phosphorescent emission when a voltage is applied between the anode and the cathode. A second organic layer is disposed between the first organic layer and the cathode. The second organic layer is in direct contact with the first organic layer. The second organic layer may comprise an aromatic hydrocarbon material, comprising an aromatic non-heterocyclic hydrocarbon core optionally substituted, and wherein the substituents are the same or different, and each is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroalkyl, substituted aryl, substituted heteroaryl and heterocyclic groups. The second organic layer may comprise a material having a molecular dipole moment less than about 2.0 debyes, such that the device has an unmodified external quantum efficiency of at least about 3% and a lifetime of at least about 1000 hours at an initial luminance of about 100 to about 1000 cd/m2. The second organic layer may be in direct contact with the cathode, or there may be a separate organic layer between the second organic layer and the cathode.
Abstract:
Newspapers and other printed matter fed from a printing press or inserting machine are generally folded or delivered in a continuous stream with the papers oriented in an overlapped or imbricated relationship. The stream of papers are received and stacked by the stacking apparatus or stacker which must operate at high speeds. The stacker orients the papers in the stacks and ejects the bundles of papers. The present invention relates to devices intended to reduce the prospects for inadvertent interference with the stacking mechanism or to reduce the potential for injury.