Abstract:
It is an object of the present invention to provide functions of a controllable device which a guest control means can control as an upper-limit range of functions controllable by a host control device. The controllable device is controlled by the host control means and the guest control means. The host control means stores a control program for controlling the controllable device, controls the controllable device according to the control program, intermediates between the guest control means and the controllable device, confirms a control request issued by the guest control means to the controllable device, and limits functions of the controllable device which can be controlled by the guest control means. The guest control means connects to the host control means and controls the controllable device according to the control program having the limited functions. A server may be provided to store the control program therein.
Abstract:
A serial interface circuit includes a first circuit disposed in the core portion and connected to the CPU, and a second circuit disposed in the peripheral circuit and connected to the peripheral registers and the first circuit; the first circuit including mirror registers, shift registers, in the write operation, serially outputting write data to the second circuit, and in the read operation, serially receiving read data supplied from the second circuit, and a first control block, in the read operation, generating a timing signal for writing the read data held in the shift registers into the corresponding mirror registers; the second circuit including shift registers and a second control block generating a second timing signal for either writing the write data held in the second shift register into the corresponding peripheral register or outputting data held in the peripheral register to the second shift register.
Abstract:
A DC-DC converter comprising a soft-magnetic, multi-layer substrate provided with a laminated coil constituted by connecting pluralities of conductor lines, and a semiconductor integrated circuit device comprising a switching device and a control circuit, which are mounted on the soft-magnetic, multi-layer substrate; the semiconductor integrated circuit device comprising an input terminal, an output terminal, a first control terminal for controlling the ON/OFF of the switching device, a second control terminal for variably controlling output voltage, and pluralities of ground terminals; the soft-magnetic, multi-layer substrate comprising first external terminals formed on a first main surface, first connecting wires formed on the first main surface and/or on nearby layers, second connecting wires formed between the side surface of the multi-layer substrate and a periphery of the laminated coil, and second external terminals formed on a second main surface; and terminals of the semiconductor integrated circuit device being connected to the first external terminals on the multi-layer substrate, at least part of the first external terminals being electrically connected to the second external terminals through the first and second connecting wires, and the input or output terminal being connected to the second external terminals via the laminated coil.
Abstract:
An automotive childproof safety lock control apparatus including a door latch which can hold a door of a vehicle in a closed position, a childproof safety lock unit which can be displaced to an unlocking state where the release of the door latch from a latching state is enabled by controlling an inner handle provided inside of the vehicle to open the door and a locking state where the release of the door latch from the latching state is disabled, and a drive unit which is linked to the childproof safety lock unit and the door latch so as to displace the childproof safety lock unit from the locking state to the unlocking state and release the door latch from the latching state when activated in one direction and to displace the childproof safety lock unit from the unlocking state to the locking state when activated in the other direction.
Abstract:
A coordinate measuring auxiliary tool including a cylindrical shaped body that is attached to an outer circumference of a coordinate measuring probe, and a clamping mechanism for positioning and fixing the cylindrical shaped body to a tip of the probe. Measurement of a thin plate-shaped object to be measured can be easily and accurately performed with the coordinate measuring auxiliary tool having a simple construction and low price. At least a part of the cylindrical shaped body may be transparent, and a position of the cylindrical shaped body to the tip of the probe can be adjusted.
Abstract:
An unbalanced-balanced multiband filter module comprising three high-frequency switches each comprising a switching element, and two unbalanced-balanced bandpass filters having different transmitting frequency bands, a first high-frequency switch being connected to an unbalanced port of the module, an unbalanced port of the first unbalanced-balanced bandpass filter, and an unbalanced port of the second unbalanced-balanced bandpass filter; a second high-frequency switch being connected to a first balanced port of the module, a first balanced port of the first unbalanced-balanced bandpass filter, and a first balanced port of the second unbalanced-balanced bandpass filter; a third high-frequency switch being connected to a second balanced port of the module, a second balanced port of the first unbalanced-balanced bandpass filter, and a second balanced port of the second unbalanced-balanced bandpass filter; and the first to third high-frequency switches being switched depending on a passing high-frequency signal, whereby a high-frequency signal input into an unbalanced port of the module is output from the first and second balanced ports, or a high-frequency signal input into the first and second balanced ports is output from an unbalanced port of the module.
Abstract:
A switch circuit for switching the connection of the receiving or transmitting circuits of two communication systems to an antenna circuit, which comprises first and second switch means having two switching elements, the first switch means comprising a first inductance element between a port connected to the antenna circuit and a port connected to the second switch means; the second switch means comprising a second inductance element between a port connected to the first switch means and a port connected to a receiving circuit of a first communication system, and a transmission line constituting the first inductance element having a lower characteristic impedance than that of a transmission line constituting the second inductance element.
Abstract:
A switch circuit for selectively switching connection of an antenna side circuit with a reception circuit and a transmission circuit of two communication systems one of which has a reception frequency band partially overlapped with a transmission frequency of the other. The switch circuit includes (a) a first switch unit for switching connection of the antenna side circuit with the transmission circuit side of the first and tie second communication systems and the reception circuit side of the first and the second communication system and (b) a second switch unit connected between the first switch unit and the reception circuit of the first and the second communication system for switching connection of the antenna side circuit with the reception circuit of the first and the second communication system. (c) The transmission circuit side of the first and the second communication system of the first switch unit is connected to a transmission circuit shared by the first and the second communication system. (d) When the transmission circuit of the first and the second communication system is connected to the antenna side circuit, the second switch unit cuts off the connection between the reception circuit of the first communication system and the first switch unit.
Abstract:
A high-frequency switch circuit is provided for switching a connection between a common transmission circuit and an antenna side circuit in a plurality of transmitting and receiving systems. The high-frequency switch includes a connection between the antenna side circuit and a reception circuit in one of the plurality of transmitting and receiving systems, and a connection between the antenna side circuit and a reception circuit in the other of the plurality of transmitting and receiving systems, the high-frequency switch circuit comprising a first diode, a second diode, and a distributed constant line, wherein a third diode is connected to the first and second diodes through the distributed constant line.
Abstract:
A high-frequency module is connected to a transmitting circuit (TX), a receiving circuit (RX) and an antenna (ANT) to control the connections between the transmitting circuit (TX) and the antenna (ANT) and between the receiving circuit (RX) and the antenna (ANT). The module comprises means (2) for controlling transmitted signals, which includes a first phase-shift circuit (5) and a high-frequency amplifier (4) provided between the antenna (ANT) and the transmitting circuit (TX). The high-frequency amplifier (4) and the first phase-shift circuit (5) are integrated into a module composed of a plurality of dielectric layers.