Abstract:
A formation fluid sample is exposed to a rigidly-supported semi-permeable membrane such as silicone rubber to permit diffusion of gases and vapors from the formation fluid into a vacuum chamber, while at the same time, blocking the passage of any liquids. The membrane-transmitted gas is analyzed in the vacuum chamber by a resonator that reacts with it. The resulting change in resonant frequency of the resonator indicates the presence of a gas that reacts with it. An ion pump or sorbent is associated with the evacuated chamber to maintain the vacuum. The ion pump or sorbent removes gases and vapors from the low-pressure chamber, which have diffused into it from the reservoir sample that is on the opposite (high-pressure) side of the semi-permeable membrane.
Abstract:
A method of analyzing acoustic data comprising, determining fluid sound speed through connate fluid. The method involves sampling the fluid, sending an acoustic signal into the fluid between a first and a second reflective interface. Data is recorded that represents acoustic signals over time as they are reflecting from the interfaces. A smoothed first derivative with respect to time of the cumulative sum of squares (CSS) of the filtered amplitude data is determined. This first derivative is cross correlated to the time-shifted versions of itself.
Abstract:
The disclosure, in one aspect, provides a method for providing an image of a fluid that includes passing light through the fluid, detecting light passing through the fluid at least one wavelength and producing signals corresponding to the detected light, and processing the signals to provide the image of the fluid.
Abstract:
The present invention provides a method and apparatus for performing elemental analysis of a formation fluid downhole. The present invention provides elemental analysis of a formation fluid downhole using breakdown spectroscopy. In one aspect of the invention, a method and apparatus are provided for performing laser induced breakdown on a formation fluid sample is provided. In another aspect of the invention a method and apparatus are provided for performing spark induced breakdown spectroscopy. Plasma is induced in a fluid under test downhole. Emissions from the plasma are analyzed to determine the elemental composition of the fluid under test. Emissions include but are not limited to light in the ultraviolet, visible, and near infrared regions of the spectrum. A spectrometer is provided for elemental analysis of a fluid downhole. Elemental analysis yields information about the fluid and the formation from which the fluid originated.
Abstract:
A sampling system used in collecting samples of connate fluid from within hydrocarbon bearing formations. The sampling system comprises a sonde disposed within a wellbore formed proximate to the formation of interest. The sonde includes a sample probe insertable into the formation and a drawdown pump in fluid communication with the sample probe. The drawdown pump is motivated by an associated electrically responsive material, where the electrically responsive material can be comprised of a piezoelectric material, a electroactive polymer, or some other electrically responsive material.
Abstract:
The present invention provides a method and apparatus for estimating a property of a fluid downhole by exposing the fluid to modulated light downhole and sensing changes in intensity of infrared radiation from the downhole fluid to estimate the property of the downhole fluid. The present invention senses changes in intensity of light by converting the changes to transient changes in temperature of a detector, such as a pyroelectric detector. The present invention performs spectroscopic analysis of fluids by optically filtering the light allowed to impinge on a pyroelectric detector, converting the changes in temperature of the pyroelectric detector to a signal and converting the signal to estimate the property of the downhole fluid. The light source is modulated by mechanically chopping the beam or by electrically pulsing the light source or by steering the beam between different path lengths of sample or between a reference cell (filled with a reference fluid or empty) and a sample-filled cell.
Abstract:
A tank contains both Zeolite and a hydrate in a gas chamber formed beneath a piston in the sample tank. Out of safety considerations, we avoid using source cylinders of nitrogen whose pressures exceed 4000 psi. Thus, the gas chamber of the sample tank is initially pressurized by the source cylinder to no more than 4000 psi of nitrogen at room temperature at the surface. Nitrogen gas is sorbed onto the zeolite at room temperature. As the tank is heated by being lowered downhole, nitrogen desorbs from the zeolite and the gas pressure increases. However, once this tank reaches a temperature high enough to release the hydrate's water of hydration, the released water is preferentially sorbed by zeolite, displacing sorbed nitrogen, and causing the pressure in the gas volume to increase even further. Because well temperatures are not high enough to desorb water from zeolite, any water sorbed onto a Zeolite sorption site will permanently block released nitrogen from resorbing at that site. The process of lowering the tank downhole provides the necessary heating to make the entire process occur. Thus, if returned to the surface at room temperature with the original gas-chamber volume, the tank's pressure would not fall back to the original pressure (e.g., 4000 psi) but would be at a substantially higher pressure (e.g., 6000 psi or more depending on the amount of Zeolite used and gaseous nitrogen gas released).
Abstract:
A system and method for acquiring seismic data are disclosed. The system comprises a controller for causing the generation of a seismic signal, where the controller has a first clock used for time-stamping a record of the generated seismic signal. A seismic receiver is deployed in a wellbore so as to detect the generated seismic signal. An atomic clock is disposed in or with the seismic receiver for time-stamping a record of the detected seismic signal. The atomic clock is synchronized with the first clock prior to being placed downhole.
Abstract:
The present invention provides a downhole method and apparatus using molecularly imprinted polymers to analyze a downhole fluid sample or determine the percentage of oil based mud filtrate contamination in a formation fluid sample.
Abstract:
The present invention provides an apparatus and method for high resolution spectroscopy (approximately 10 picometer wavelength resolution) using a tunable optical filter (TOF) for analyzing a formation fluid sample downhole and at the surface to determine formation fluid parameters. The analysis comprises determination of gas oil ratio, API gravity and various other fluid parameters which can be estimated after developing correlations to a training set of samples using a neural network or a chemometric equation.