Abstract:
Modes on power consumption are suitably set. There is provided an information processing device including a control section. When the information processing device in a first mode transitions to a second mode in which the information processing device consumes power differently than in the first mode, the control section performs control to transmit at least one frame. Upon transmitting the frame, the control section inserts into the frame information for notifying a first device compatible with the second mode that the information processing device will transition to the second mode, and information for causing a second device incompatible with the second mode to suppress transmission.
Abstract:
A communication apparatus includes circuitry configured to perform a process on a frame so that the frame has redundancy corresponding to first information indicating at least one of a first transmission period or a band used for transmission, or uses a modulation scheme corresponding to the first information.
Abstract:
Methods and apparatus for determining an altitude for a terminal device operating in a wireless telecommunications network including the terminal device and another network entity. The terminal device measures an indication of barometric pressure in its vicinity using a barometric sensor. The other network entity establishes calibration information, for the barometric pressure measurement, including a reference barometric pressure for a reference altitude and may come from a barometric pressure measurement at the other network entity or from meteorological data provided to the other network entity. The altitude relative to the reference altitude may then be determined from the difference between the barometric pressure measured by the terminal device and the reference barometric pressure, by the terminal device after receiving the calibration information from the other network entity and/or by the other network entity after receiving an indication of the barometric pressure measured by the terminal device.
Abstract:
Even when the lengths of data items to be transmitted to users are not the same, the frames multiplexed at the same time finally have the same frame length and are transmitted.Even when the lengths of frames for the users are not the same at the time when a transmission request is received from a higher layer, a communication apparatus reconfigures at least two of the frames having short lengths into a frame having a long length through Aggregation so that the frames finally have the same frame length and transmits the frames at the same time in a multiplexed manner. On the transmitter side, the transmission power used per destination communication station can be increased due to a decrease in the total number of multiplexed frames. On the receiver side, an unstable AGC operation can be prevented.
Abstract:
A content server delivers content items on demand to communications devices, and includes: a network interface configured to receive a content request from each of the communications devices and, in response to the received content requests, to transmit the content item to each of the communications devices following the arrival of a predetermined time using a network and one of a plurality of wireless access interfaces, each of the wireless access interfaces being configured to transmit and/or receive signals using a different radio access technology; and a control unit configured to cause the content transmitter to select one of the wireless access interfaces for transmitting the content item based on the number of content requests received prior to the arrival of the predetermined time; wherein the network interface is configured to transmit a signaling message to each of the communications devices signaling the selected wireless access interface prior to transmitting the content item.
Abstract:
A communications system including an infrastructure equipment, forming part of a mobile communications network, that transmits and receives data to/from a user device via a wireless access interface using a plurality of Orthogonal Frequency Division Multiplexing (OFDM) subcarriers that extend across a first bandwidth. The infrastructure equipment is configured to transmit repeatedly signals representing a same instance of user device payload data in a second bandwidth less than and within a first bandwidth, and includes a subset of the OFDM subcarriers. The user device is configured to receive one or more of the signals repeatedly transmitted across the second bandwidth, to store in a memory signals representing the repeatedly transmitted signals received across the second bandwidth and to combine the stored signals, and to detect the user device payload data from the combined signals, the user device having been provided with an indication of the second bandwidth.
Abstract:
A wireless telecommunications system in which downlink communications are made using a radio interface that spans a system frequency bandwidth (host carrier) and supports at least some communications from a base station to least some terminal devices within a plurality of restricted frequency bands (virtual carriers) which are narrower than and within the system frequency bandwidth. A terminal device conveys an indication of its identity, to the base station during an initial connection procedure as the terminal device seeks to access the radio interface. The terminal device and the base station both determine a selected restricted frequency band from among the plurality of restricted frequency bands based on the identity of the terminal device in the same way. Thus the terminal device and base station select the same restricted frequency band and can accordingly configure their respective transceivers to allow downlink communications between them within the selected restricted frequency band.
Abstract:
A user device to transmit and receive data to and from an infrastructure equipment via a wireless access interface using a plurality of Orthogonal Frequency Division Multiplexing (OFDM) subcarriers extending across at least a first bandwidth. The infrastructure equipment transmits repeatedly signals representing a same instance of user device payload data in a second bandwidth, the second bandwidth being less than and within the first bandwidth and including a subset of the OFDM subcarriers. The user device is configured to receive one or more of the signals repeatedly transmitted across the second bandwidth and to store in a memory signals representing the repeatedly transmitted signals received across the second bandwidth. The user device is also configured to combine the stored signals and to detect the user device payload data from the combined signals, the user device having been provided with an indication of the second bandwidth.
Abstract:
A communications device configured to receive data from a mobile communications network including one or more network elements providing a wireless access interface. The wireless access interface provides plural communications resource elements across a host frequency bandwidth, and includes, within the host frequency bandwidth, first communications resource elements within a first frequency bandwidth for allocation preferably to reduced capability devices to receive signals representing data transmitted by a transmitter within the first bandwidth forming a first virtual carrier, the reduced capability devices each having a receiver bandwidth greater than or equal to the first frequency bandwidth but less than the host frequency bandwidth. Communications devices of different capabilities can be allocated communications resources within different frequency ranges according to their capability, to relieve congestion on a center frequency of communications resources in which communications devices with a minimum bandwidth capability must receive communications resources for receiving down link signals.
Abstract:
A method of operating a base station in a wireless telecommunications system. Downlink communications from the base station to terminal devices are made using a plurality of OFDM sub-carriers spanning a system frequency bandwidth. The base station supports communications with a first type of terminal device on a host carrier using OFDM sub-carriers distributed across the system frequency bandwidth and supports communications with a second type of terminal device on a restricted bandwidth carrier using OFDM sub-carriers distributed across a restricted frequency bandwidth which is smaller than and within the system frequency bandwidth. Respective base stations can exchange information regarding their restricted bandwidth carrier transmissions to help them coordinate their respective transmissions with a view to reducing intercell interference.