Abstract:
A method of obtaining a focus term by using a periodicity of the focus term is provided. The focus term may be used in a plurality of operation processes for processing image data.
Abstract:
A liquid crystal light deflector includes a first electrode layer including a plurality of pattern electrodes arranged with a constant pitch in a first direction on a first substrate, a first alignment layer covering the first electrode layer and having a plurality of concave portions formed on an upper surface thereof and extending in parallel to a second direction perpendicular to the first direction, a liquid crystal layer including a plurality of liquid crystal molecules each having a long diameter substantially parallel to the concave portions on the first alignment layer, a second electrode layer, which is a common electrode, disposed on the liquid crystal layer, and a second substrate disposed on the second electrode layer.
Abstract:
A spatial light modulator providing an expanded viewing window and a holographic display apparatus including the spatial light modulator are provided. The spatial light modulator includes a mask member having a periodic pattern that is arranged to split an area of each of a plurality of pixels into at least two portions such that a space between lattice spots formed by a period structure of the spatial light modulator increases.
Abstract:
Disclosed are a beam combining/splitting modulator, a display apparatus including the same, and a spatial light modulation method. The beam combining/splitting modulator includes a light modulator including first and second modulation regions for modulating light, a polarization converter disposed at a side of an emitting surface of the light modulator and including a first transmissive region for polarizing and converting light incident from the first modulation region to have a first polarization and a second transmissive region for polarizing and converting light incident from the second modulation region to have a second polarization, a birefringence modulator disposed at the side of an emitting surface of the polarization converter and switching between a first state in which birefringence occurs and a second state in which birefringence does not occur, and a polarizer disposed at the side of an emitting surface of the birefringence modulator.
Abstract:
Provided are a color-depth sensor and a three-dimensional image acquisition apparatus including the same. The color-depth sensor includes a color sensor that senses visible light and an infrared sensor that is stacked on the color sensor and senses infrared light. The 3D image acquisition apparatus includes: an imaging lens unit; a color-depth sensor that simultaneously senses color image information and depth image information about an object from light reflected by the object and transmitted through the imaging lens unit; and a 3D image processor that generates 3D image information by using the color image information and the depth image information sensed by the color-depth sensor.
Abstract:
An acousto-optic element array includes: acousto-optic elements each including an acousto-optic generator, a light supply, and a wave transducer; a gate driver that selects an acousto-optic element to be driven from among the acousto-optic elements; an electrical data driver that is connected to an electrical wire and transmits electrical data to an electro-optic modulator configured to control the acousto-optic generator of the selected acousto-optic element; and a wave data driver that is connected to a waveguide and transmits wave data to the wave transducer of the selected acousto-optic element.
Abstract:
A method of generating a hologram includes receiving three-dimensional (3D) image data, dividing 3D image data into data groups which are independent from one another, by a first processor; calculating, from at least one of the data groups, hologram values to be displayed at respective positions on a hologram plane, by the first processor; calculating, from at least another one of the data groups, hologram values to be displayed at the respective positions on the hologram plane by a second processor, and summing the calculated hologram values for each of the respective positions on the hologram plane, by the first processor or the second processor, or by the first processor and the second processor in parallel.
Abstract:
A method of manufacturing a master mold includes forming a plurality of replica resin layers using a mold; forming a replica template by bonding the plurality of replica resin layers on a template; forming a replica mold layer having a pattern corresponding to a pattern of the plurality of replica resin layers using the replica template; forming a flexible stamp having a pattern formed on a surface thereof using the replica mold layer; transferring the pattern formed on the surface of the flexible stamp to a mold resin; and forming a large area master mold by etching a surface of a substrate based on a pattern shape of the mold resin.
Abstract:
A three-dimensional holographic display device includes a light emitting diode (LED) array including a plurality of light sources controlled to sequentially output light according to a preset pattern, a lens configured to refract light incident from the LED array, a spatial light modulator (SLM) configured to modulate light incident from the lens, and a processor configured to generate a plurality of holographic signals each comprising depth information adjusted according to an arrangement location of each of the plurality of light sources, and for each of the plurality of light sources, control the SLM to modulate the light based on a holographic signal corresponding to the light source.
Abstract:
A method for processing a three-dimensional (3D) image includes acquiring a frame of a color image and a frame of a depth image, and generating a frame by combining the acquired frame of the color image with the acquired frame of the depth image. The generating of the frame includes combining a line of the color image with a corresponding line of the depth image.