Abstract:
A method and a system for handling in-device coexistence interference in a user equipment are provided. The method includes detecting in-device coexistence interference between one or more of a plurality of carrier frequencies of Long Term Evolution (LTE) radio technology and at least one frequency of non-LTE radio technologies, determining at least one of the one or more of the plurality of LTE carrier frequencies for which a measurement object is configured, and transmitting interference information associated with the at least one LTE carrier frequency affected by the in-device coexistence interference. The interference information includes a measurement object identifier of the at least one carrier LTE frequency, Direction of Interference (DOI), and time domain multiplexing assistance information. The method further includes receiving a configured method from the network entity which help mitigate the in-device coexistence interference at the user equipment.
Abstract:
A system and method provide a security aspect for a UE in dual connectivity mode of operation in wireless communication networks. The system and method provide secure simultaneous transmission and reception in a secure manner between a User Equipment (UE) and one or more eNodeBs (eNBs) configured in an inter-eNB carrier aggregation scenario. The system establishes of a security context between the UE and the Secondary eNB (SeNB) using the RRC signaling between the UE and the Master eNB (MeNB), when a plurality of SCells within SeNB are added simultaneously. The system also detects the intruder in the user data radio bearers, while a UE is operating in dual connectivity mode of operation.
Abstract:
A method and system to handle behavior of a carrier aggregation capable User Equipment (UE) that does not support simultaneous reception and transmission in overlapped Downlink (DL)-Uplink (UL) sub frames during inter-band Carrier Aggregation (CA) for cell specific TDD configuration is disclosed. The method specifies whether the UE is allowed or not allowed to monitor the PDCCH sub frames during overlap of DL-UL sub frames by signaling the UE with a resultant TDD configuration that is applicable to component carriers of the PCell and one or more SCells. The method also addresses handling of the DRX timers by defining the active time for common DRX operation by the UE for all component carriers. The method enhances the 3GPP specification to enable UE to better handle reception and transmission during overlap of DL-UL sub frames in cell specific TDD configuration during inter-band CA.
Abstract:
Embodiments herein provide a method for handling a user plane by a UE configured for dual connectivity operation. The method includes receiving a RRC reconfiguration message including one or more Layer 2 indications and a Layer 2 configuration corresponding to one or more radio bearers from one of a MN and a SN involved in a dual connectivity operation of the UE. Further, the method includes performing, by the UE, one of: reestablishing of a RLC entity and a data recovery procedure for a PDCP entity corresponding to the radio bearer based on the one or more Layer 2 indications and the Layer 2 configuration received in the RRC reconfiguration message, and reestablishing of a RLC entity and reestablishing of a PDCP entity corresponding to the radio bearer based on the one or more Layer 2 indications and the Layer 2 configuration received in the RRC reconfiguration message.
Abstract:
The disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for the Internet of things (IoT). The present disclosure may be applied to intelligent services based on 5G communication technology and IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a method and apparatus for handling message A retransmission during 2 step random access procedures.
Abstract:
Embodiments herein provide a method and system for performing a bearer type change of a plurality of radio bearers configured for a User Equipment (UE). The proposed method includes changing the bearer type of specific bearer by the network. Further, the proposed method includes checking any changes in keys or PDCP termination point or PDCP version change. Furthermore, the proposed method includes notifying the UE to change the bearer type either through reconfiguration procedure without handover or SN change procedure or reconfiguration procedure with handover or SN change procedure. The network indicates one or more operations to the UE for performing the bearer type change.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments herein disclose a method and system for performing initial beam alignment during a random access (RACH) procedure by a User Equipment (UE).
Abstract:
Method and a UE for managing an IDC issue. The UE includes a memory, a processor, coupled to the memory and communication module based on LTE RAT, configured to transmit capability information on a licensed carrier associated with a primary cell, wherein the UE supports a LAA operation. Further, the processor, coupled to the communication module based on LTE RAT, is configured to receive an IDC indication from the primary cell served by an eNB. Further, the processor, coupled to the communication module based on LTE RAT, configured to detect the IDC issue in an unlicensed band associated with a secondary cell. Further, the processor, coupled to the communication module based on LTE RAT, configured to transmit an IDC message comprising assistance information to the primary cell and receive a message to resolve the IDC issue based on the assistance information from the primary cell served by the eNB.
Abstract:
The disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for the Internet of things (IoT). The present disclosure may be applied to intelligent services based on 5G communication technology and IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a method and apparatus for handling message A retransmission during 2 step random access procedures.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method for handling random access procedure in wireless communication system is provided. The method includes determining, by a user equipment (UE), that the UE is in one of an idle mode or an inactive mode, acquiring, by the UE, a system information block (SIB) Type1 (SIB1) message from a cell, determining, by the UE, whether the UE supports a frequency band criterion, a spectrum emission criterion, and a bandwidth part criterion based contents of the acquired SIB1 message, and performing, by the UE, one of camping on the cell in response to determining that the UE supports at least one of the frequency band criterion, the spectrum emission criterion, or the bandwidth part criterion, or barring the cell in response to determining that the UE does not support both the frequency band criterion, the spectrum emission criterion, or the bandwidth part criterion.