Abstract:
A temperature insensitive diode-pumped solid state laser is disclosed in this invention. The components of the laser are optimized with temperature insensitive design, making the laser capable of operating in a wide temperature range without using any cooling/heating system to maintain the temperature of its components.
Abstract:
The photo therapy apparatus of the present invention comprises one or more light sources which are integrated with a molar bite block for providing photobiomodulation therapy to the oral mucosa of a cancer patient suffering from (or at risk of) Oral Mucositis. The light sources can be either internal, or external to the bite block, and either lasers, light emitting diodes (LEDs), lamps, or any other types of light sources which produce therapeutic light in a desired wavelength range. The therapeutic light is delivered through the bite block to the oral mucosa. The delivered light produces a photochemical and photophysical process e.g. increase the blood flow and circulation. This photochemical and photophysical process helps to reduce the incidence and severity of oral mucositis in cancer patients and helps improve outcomes of cancer therapy.
Abstract:
This invention discloses a cold plasma therapy device with enhanced safety. The plasma therapy device comprises a dielectric barrier made of a material with high dielectric constant (i.e., relative permittivity). Hence the thickness of the dielectric barrier can be increased to produce similar plasma intensity in comparison to a dielectric barrier with a low dielectric constant. The increased thickness enhances the mechanical durability of the dielectric barrier. When the thickness of the dielectric barrier is larger than the maximum discharge gap of the ambient air (or the supplied gas medium) under the voltage applied, no arc discharge will be produced even when there is a crack across the thickness of the dielectric barrier. This minimizes the risk of subject tissue damage from possible electric shocks.
Abstract:
The present invention embodies a technique, referred to as Secure QR Codes, which not only provides aesthetically enhanced QR codes but also allows for security. It can embed a standard black and white QR code, referred to as a public QR code, and a secret QR code, both into a secure QR code. The secure QR code produced is composed of colored cells. The public black and white QR code must first be, either aesthetically enhanced into an enhanced colored QR code, or transformed into a colored QR code with cells of uniform color obtained by transforming each of the black and white cells of the public QR code into cells that takes a color from a subset of possible colors, such that the luminance of each colored cell approximates accurately the black or white luminance values of the public QR code.
Abstract:
This invention discloses a method for material identification by analyzing the LIBS spectrum of the sample. The LIBS spectrum is pre-processed to equalize the contribution of elements with strong and weak emission lines. In the meantime, the number of spectral variables is reduced to enhance the specificity and minimize the influence of instrument noise. Commonly used spectrum identification and library search algorithms are then applied to the pre-processed LIBS spectrum for material identification.
Abstract:
This invention discloses a laser induced breakdown spectroscopy (LIBS) apparatus based on a high repetition rate pulsed laser. The laser produces a train of laser pulses at a high repetition rate in the kHz or even higher range. When the laser beam hits the sample, it generates several thousands of micro-plasmas per second. Synchronized miniature CCD array optical spectrometer modules collect the LIBS signal from these micro-plasmas. By adjusting the integration time of the spectrometer to cover a plurality of periods of the laser pulse train, the spectrometer integrates the LIBS signal produced by this plurality of laser pulses. Hence the intensity of the obtained LIBS spectrum can be greatly improved to increase the signal-to-noise ratio (SNR) and lower the limit of detection (LOD). In addition, the influence of pulse to pulse variation of the laser is minimized since the obtained LIBS spectrum is the spectrum of a plurality of micro-plasmas produced by a plurality of laser pulses. The high repetition rate laser also makes it possible for fast scanning the laser beam over the sample surface such that an average spectrum of the sample is collected to overcome the sample non-uniformity issue or for performing spectral imaging of the sample by correlating the obtained LIBS spectrum with the position of the scanning laser beam.
Abstract:
The present invention embodies a technique, referred to as Secure QR Codes, which not only provides aesthetically enhanced QR codes but also allows for security. It can embed a standard black and white QR code, referred to as a public QR code, and a secret QR code, both into a secure QR code. The secure QR code produced is composed of colored cells. The public black and white QR code must first be, either aesthetically enhanced into an enhanced colored QR code, or transformed into a colored QR code with cells of uniform color obtained by transforming each of the black and white cells of the public QR code into cells that takes a color from a subset of possible colors, such that the luminance of each colored cell approximates accurately the black or white luminance values of the public QR code.
Abstract:
This invention discloses a laser induced breakdown spectroscopy (LIBS) apparatus based on high repetition rate pulsed laser. The laser produces a train of laser pulses at a high repetition rate in the kHz (or even higher) range. When the laser beam hits the biological sample, it generates several thousands of micro-plasmas per second. Synchronized miniature CCD array optical spectrometer modules collect the LIBS signal from these micro-plasmas. By adjusting the integration time of the spectrometer to cover a plurality of periods of the laser pulse train, the spectrometer integrates the LIBS signal produced by this plurality of laser pulses. Hence the intensity of the obtained LIBS spectrum can be greatly improved to increase the signal-to-noise ratio (SNR) and lower the level of detection (LOD).
Abstract:
An improved method for performing phototherapy. The method comprises a step of applying a supplement to the patient before/after light treatment, which produces nitric oxide in the subject biological tissue to be treated. The nitric oxide serves as signaling molecules to cause vasodilatation and increase blood flow and micro-circulation in the biological tissue so as to enhance the effect and reduce the required treatment time of phototherapy.
Abstract:
A phototherapy apparatus with precise dosage control is disclosed. The phototherapy apparatus incorporates means for tracking any combination of the following: position, direction of motion, velocity, or acceleration of the therapeutic light beam over the treatment area. The delivered light dosage is calculated based on these parameters and the intensity of the laser beam.