摘要:
Thinned and highly reliable light emitting elements are provided. Further, light emitting devices in which light emitting elements are formed over flexible substrates are manufactured with high yield. One light emitting device includes a flexible substrate, a light emitting element formed over the flexible substrate, and a resin film covering the light emitting element, and in the light emitting element, an insulating layer serving as a partition has a convex portion and the convex portion is embedded in the resin film, that is, the resin film covers an entire surface of the insulating layer and an entire surface of the second electrode, whereby the light emitting element can be thinned and highly reliable. In addition, a light emitting device can be manufactured with high yield in a manufacturing process thereof.
摘要:
An object is to provide a thin and small semiconductor device that has high reliability and high resistance to external stress and electrostatic discharge. Another object is to manufacture a semiconductor device with high yield while shape defects and defective characteristics which are caused by external stress or electrostatic discharge are prevented in the manufacturing process. A conductive shield covering a semiconductor integrated circuit prevents electrostatic breakdown (malfunction of the circuit or damage to a semiconductor element) of the semiconductor integrated circuit due to electrostatic discharge. By providing an antenna on the external side of the conductive shield, a sufficient communication capability is secured. With the use of a pair of insulators which sandwich the semiconductor integrated circuit, a thin and small semiconductor device that has resistance properties and high reliability can be provided. Further, shape defects and defective characteristics which are caused by external stress or electrostatic discharge are prevented in the manufacturing process, so that a semiconductor device can be manufactured with high yield.
摘要:
With the use of a conductive shield formed on the top or bottom side of a semiconductor integrated circuit, an electrostatic breakdown (malfunctions of the circuit or damages of a semiconductor element) of the semiconductor integrated circuit due to electrostatic discharge is prevented, and sufficient communication capability is obtained. With the use of a pair of insulators which sandwiches the semiconductor integrated circuit, a highly reliable semiconductor device that is reduced in thickness and size and has resistance to an external stress can be provided. A semiconductor device can be manufactured with high yield while defects of shapes and characteristics due to an external stress or electrostatic discharge are prevented in the manufacturing process.
摘要:
To solve a problem in that an antenna or a circuit including a thin film transistor is damaged due to discharge of electric charge accumulated in an insulator (a problem of electrostatic discharge), a semiconductor device includes a first insulator, a circuit including a thin film transistor provided over the first insulator, an antenna which is provided over the circuit and is electrically connected to the circuit, and a second insulator provided over the antenna, a first conductive film provided between the first insulator and the circuit, and a second conductive film provided between the second insulator and the antenna.
摘要:
There is provided an electron source according to the present invention, having a plurality of electron-emitting devices wherein each of the electron-emitting devices has a pair of electrodes, and a plurality of conductive films having respective electron emitting portions, provided between the pair of electrodes so as to be electrically connected to the pair of electrodes, the electron source including: a short-circuit suppressing film which is positioned between the plurality of conductive films and is provided on the electron-emitting device so as to be electrically connected to the pair of electrodes, and mainly contains tungsten (W) and germanium (Ge) nitride, wherein a ratio of the number of tungsten atoms to the number of tungsten and germanium atoms is 0.24 or more in the short-circuit suppressing film, surface resistivity of the short-circuit suppressing film is not less than 1×1010 Ω/square and not more than 1×1013 Ω/square.
摘要:
An object is to provide a highly reliable light emitting device which is thin and is not damaged by external local pressure. Further, another object is to manufacture a light emitting device with a high yield by preventing defects of a shape and characteristics due to external stress in a manufacture process. A light emitting element is sealed between a first structure body in which a fibrous body is impregnated with an organic resin and a second structure body in which a fibrous body is impregnated with an organic resin, whereby a highly reliable light emitting device which is thin and has intensity can be provided. Further, a light emitting device can be manufactured with a high yield by preventing defects of a shape and characteristics in a manufacture process.
摘要:
To reduce defects of a semiconductor device, such as defects in shape and characteristic due to external stress and electrostatic discharge. To provide a highly reliable semiconductor device. In addition, to increase manufacturing yield of a semiconductor device by reducing the above defects in the manufacturing process. The semiconductor device includes a semiconductor integrated circuit sandwiched by impact resistance layers against external stress and an impact diffusion layer diffusing the impact and a conductive layer covering the semiconductor integrated circuit. With the use of the conductive layer covering the semiconductor integrated circuit, electrostatic breakdown (malfunctions of the circuit or damages of a semiconductor element) due to electrostatic discharge of the semiconductor integrated circuit can be prevented.
摘要:
A semiconductor device with high reliability and operation performance is manufactured without increasing the number of manufacture steps. A gate electrode has a laminate structure. A TFT having a low concentration impurity region that overlaps the gate electrode or a TFT having a low concentration impurity region that does not overlap the gate electrode is chosen for a circuit in accordance with the function of the circuit.
摘要:
An object is to suppress discharge due to static electricity generated by peeling, when an element formation layer including a semiconductor element is peeled from a substrate. Over the substrate, the release layer and the element formation layer are formed. The support base material which can be peeled later is fixed to the upper surface of the element formation layer. The element formation layer is transformed through the support base material, and peeling is generated at an interface between the element formation layer and the release layer. Peeling is performed while the liquid is being supplied so that the element formation layer and the release layer which appear sequentially by peeling are wetted with the liquid such as pure water. Electric charge generated on the surfaces of the element formation layer and the release layer can be diffused by the liquid, and discharge by peeling electrification can be eliminated.
摘要:
With an object of providing a transflective type liquid crystal display device having a transparent electrode of an uneven structure formed without particularly increasing steps, in fabricating the transflective type liquid crystal display device, a amorphous transparent conductive film is formed on a substrate, a crystalline portion is formed in the amorphous transparent conductive film to thereby form the transparent conductive film including the crystalline portion, a amorphous portion is removed at a film surface of the transparent conductive film including the crystalline portion to thereby form the transparent conductive film having an uneven shape formed by a remaining crystalline portion at a film surface and a reflecting electrode having the uneven shape is formed by forming a reflective conductive film above the transparent electrode having the uneven shape.