Abstract:
A system (100) for additively manufacturing a composite part (102) is disclosed. The system (100) comprises a housing (104) and a nozzle (107). The nozzle (107) is supported by the housing (104). The nozzle (107) comprises an outlet (110), sized to dispense a continuous flexible line (112). The continuous flexible line (112) comprises a non-resin component (114) and a photopolymer-resin component (116). The system (100) also comprises a feed mechanism (118), supported within the housing (104). The feed mechanism (118) is configured to push the continuous flexible line (112) out of the outlet (110) of the nozzle (107). The system (100) further comprises a light source (120), supported by the housing (104). The light source (120) is configured to deliver a light beam to the continuous flexible line (112) after the continuous flexible line (112) exits the outlet (110) of the nozzle (107) to at least partially cure the photopolymer-resin component (116) of the continuous flexible line (112).
Abstract:
A method (500) of additively manufacturing a composite part (102) comprises applying a first quantity of a first part (253) of a thermosetting resin (252) to a first element (271) of a non-resin component (108) by pulling the first element (271) through a first resin-part applicator (236) and applying a second quantity of a second part (255) of the thermosetting resin (252) to a second element (273) of the non-resin component (108) by pulling the second element (273) through a second resin-part applicator (237). The method (500) also comprises combining the first element (271) with the first quantity of first part (253) and the second element (273) with the second quantity of second part (255), to create a continuous flexible line (106). The method (500) additionally comprises routing the continuous flexible line (106) into a delivery guide (112) and depositing, via the delivery guide (112), a segment (120) of the continuous flexible line (106) along a print path (122).
Abstract:
A method (400) of additively manufacturing a composite part (102) comprises applying a liquid photopolymer resin (252) to a non-resin component (108) to create a continuous flexible line (106) by pulling the non-resin component (108) through a vessel (236), containing a volume of the liquid photopolymer resin (252). The continuous flexible line (106) comprises the non-resin component (108) and a photopolymer-resin component (110) that comprises at least some of the liquid photopolymer resin (252) applied to the non-resin component (108). The method (400) further comprises routing the continuous flexible line (106) into a delivery guide (112), pushing the continuous flexible line (106) out of the delivery guide (112), depositing, via the delivery guide (112), a segment (120) of the continuous flexible line (106) along a print path (122), and delivering curing energy (118) at least to a portion (124) of the segment (120) of the continuous flexible line (106).
Abstract:
A method (400) of additively manufacturing a composite part (102) is disclosed. The method (400) comprises applying a thermosetting resin (252) to a non-resin component (108) of a continuous flexible line (106) while pushing the non-resin component (108) through a delivery guide (112) and pushing the continuous flexible line (106) out of the delivery guide (112). The continuous flexible line (106) further comprises a thermosetting resin component (110) that comprises at least some of the thermosetting resin (252) applied to the non-resin component (108). The method (400) further comprises depositing, via the delivery guide (112), a segment (120) of the continuous flexible line (106) along the print path (122).
Abstract:
A method (300) of additively manufacturing a composite part (102) comprises depositing a segment (120) of a continuous flexible line (106) along a print path (122). The continuous flexible line (106) comprises a non-resin component (108) and a photopolymer-resin component (110) that is partially cured. The method (300) also comprises delivering a predetermined or actively determined amount of curing energy (118) at least to a portion (124) of the segment (120) of the continuous flexible line (106) at a controlled rate while advancing the continuous flexible line (106) toward the print path (122) and after the segment (120) of the continuous flexible line (106) is deposited along the print path (122) to at least partially cure at least the portion (124) of the segment (120) of the continuous flexible line (106).
Abstract:
A method (400) of additively manufacturing a composite part (102) comprises applying a thermosetting resin (252) to a non-resin component (108) to create a continuous flexible line (106) by pulling a non-resin component (108) through a first resin-part applicator (236), in which a first quantity of a first part (253) of the thermosetting resin (252) is applied to the non-resin component (108), and by pulling a non-resin component (108) through a second resin-part applicator (237), in which a second quantity of a second part (255) of the thermosetting resin (252) is applied to at least a portion of the first quantity of the first part (253) of the thermosetting resin (252), applied to the non-resin component (108). The method (400) further comprises routing the continuous flexible line (106) into a delivery guide (112) and depositing, via the delivery guide (112), a segment (120) of the continuous flexible line (106) along a print path (122).
Abstract:
In accordance with one or more aspects of the disclosed embodiment, a system for transporting wire components during the assembly of wire bundles includes an air-operated tube network connecting a transport source station to a plurality of transport destination stations, the air-operated tube network comprising a junction coupled between the transport source station and the plurality of transport destination stations, and a system controller that includes a wire bundle assembly program, the system controller programmed to automatically transmit wire components from the source station to at least one of the transport destination stations based on the wire bundle assembly program.
Abstract:
An apparatus for processing a cable including an insulating member, a shielding layer, and a conductor, the apparatus includes a frame forming a housing having an aperture configured to receive an end portion of the cable; a first gripping member disposed within the housing and being configured to grip the cable; and a second gripping member disposed within the housing and being configured to grip the cable; wherein the second gripping member is mounted within the housing so as to be movable relative to the first gripping member to effect fanning and cutting of a portion of the shielding layer.