Abstract:
A polymer composition that comprises a polyarylene sulfide, inorganic fibers, impact modifier, and a functionalized coupling system is provided. The functionalized coupling system includes a disulfide compound and an organosilane compound. The weight ratio of organosilane compounds to disulfide compounds is from about 0.1 to about 10.
Abstract:
A nucleating system for a thermoplastic composition that contains a polyarylene sulfide is provided. The nucleating system includes a combination of an inorganic crystalline compound and an aromatic amide oligomer. The present inventors have discovered that the combination of these different types of nucleating agents result in excellent crystallization properties (e.g., rate of crystallization). Due to the improved crystallization rate, the thermoplastic composition can be molded at lower temperatures to still achieve the same degree of crystallization. In addition to minimizing the energy requirements of the molding operating, the use of lower temperatures can also decrease the production of “flash” normally associated with high temperature molding operations. The composition may also possess good viscosity properties that allow it to be readily molded into parts of a variety of different shapes and sizes.
Abstract:
A thermoplastic composition that comprises a low-naphthenic, thermotropic liquid crystalline polymer blended with a combination of flow modifiers is provided. More particularly, one of the flow modifiers is a hydroxy-functional compound that contains or more hydroxyl functional groups. Without intending to be limited by theory, it is believed that the hydroxyl functional groups can react with the polymer chain to shorten its length and thus reduce melt viscosity. Aromatic dicarboxylic acids are also employed as a flow modifier in the thermoplastic composition. Again, without intending to be limited by theory, it is believed that such acids can combine smaller chains of the polymer together after they have been cut by hydroxy-functional compounds. This helps maintain the mechanical properties of the composition even after its melt viscosity has been reduced.
Abstract:
A thermoplastic composition that comprises a low-naphthenic, thermotropic liquid crystalline polymer blended with a combination of flow modifiers is provided. More particularly, one of the flow modifiers is a hydroxy-functional compound that contains or more hydroxyl functional groups. Without intending to be limited by theory, it is believed that the hydroxyl functional groups can react with the polymer chain to shorten its length and thus reduce melt viscosity. Aromatic dicarboxylic acids are also employed as a flow modifier in the thermoplastic composition. Again, without intending to be limited by theory, it is believed that such acids can combine smaller chains of the polymer together after they have been cut by hydroxy-functional compounds. This helps maintain the mechanical properties of the composition even after its melt viscosity has been reduced.
Abstract:
A wholly aromatic thermotropic liquid crystalline polymer and compositions including the liquid crystalline polymer are described. The polymer composition can include the liquid crystalline polymer and a fibrous filler, e.g., a chopped glass or milled glass fibrous filler. The compositions are capable of exhibiting excellent mechanical properties. The liquid crystalline polymer provides desirable characteristics with the incorporation of little or no naphthenic acids in the polymer backbone.
Abstract:
A film formed from a polymer composition containing one or more thermotropic liquid crystalline polymers is provided. The specific nature of the polymer or blend of polymers is selectively controlled so that the resulting polymer composition possesses both a low viscosity and high melt strength. The present inventor has discovered that this unique combination of thermal properties results in a composition that is both highly melt processible and stretchable, which allows the resulting film to be oriented to a degree greater than previously thought possible.
Abstract:
A polymer composition that contains at least one high performance polymer and at least one aromatic amide oligomer is provided. The oligomer can serve as a flow aid that lowers the overall viscosity of the polymer matrix under shear.
Abstract:
A method for injection molding a thermoplastic composition that contains a polyarylene sulfide and an aromatic amide oligomer is provided. Due to the improved crystallization properties imparted by the oligomer, the present inventors have discovered that the thermoplastic composition can be molded at lower temperatures to still achieve the same degree of crystallization. In addition to minimizing the energy requirements for the molding operation, such low mold temperatures may be accomplished using heating mediums that are less corrosive and expensive than some conventional techniques.
Abstract:
An implantable medical device that employs one or more fibers formed from a polymer composition that contains at least one liquid crystalline polymer is provided. In addition to being highly inert and biocompatible, the rigid rod-like structure of liquid crystalline polymers can allow them to be particularly well suited for implantable devices. Apart from the benefits from the polymer itself, the fibers are formed in such a manner so that they are generally flexible, but yet still possess a sufficient degree of strength so that they can be effectively employed in implantable medical devices.
Abstract:
Low VOC emission polyoxymethylene and compositions and products that incorporate the polyoxymethylene are described. The polyoxymethylene is end capped with compound that can prevent degradation of the polymer and subsequent emission of VOC degradation products such as formaldehyde. The end-capped polyoxymethylene can include an inorganic linkage within the polymer backbone that is the reaction product of a terminal hydroxyl group of the polyoxymethylene and a hydrolyzable group of the compound. Also disclosed are products as may be formed from the low VOC emission polyoxymethylene.