摘要:
A ferromagnetic film according to the present invention includes ferromagnetic element and nonmagnetic element and has a first portion and a second portion. Concentration of the nonmagnetic element in the first portion is lower than an average concentration of the nonmagnetic element in the ferromagnetic film. On the other hand, concentration of the nonmagnetic element in the second portion is higher than the average concentration of the nonmagnetic element in the ferromagnetic film. The nonmagnetic element includes at least one element selected from the group consisting of Zr, Ti, Nb, Ta, Hf, Mo and W. The ferromagnetic film is applied to a magnetic free layer of a magneto-resistance element in an MRAM.
摘要:
A magnetoresistance effect device includes a magnetized free layer formed of a ferromagnetic material, a magnetized fixing layer formed of a ferromagnetic material and having a crystal grain boundary, a nonmagnetic layer provided between the magnetized free layer and the magnetized fixing layer, and an antiferromagnetic layer provided on one surface of the magnetized fixing layer, which is opposed to a surface of the nonmagnetic layer. The magnetized fixing layer has an element which is segregated into the crystal grain boundary to prevent a material of the antiferromagnetic layer from diffusing.
摘要:
According to one embodiment, a magnetoresistive element is disclosed. The element includes a first magnetic film, a second magnetic film, and a first nonmagnetic layer formed between the first magnetic film and the second magnetic film. The second magnetic film includes a first magnetic layer formed on a side of the first nonmagnetic layer, a second magnetic layer formed on a side opposite to the first nonmagnetic layer, and a second nonmagnetic layer formed between the first magnetic layer and the second magnetic layer and containing TiN.
摘要:
According to one embodiment, a magnetoresistive element comprises a first magnetic layer, a second magnetic layer, a first nonmagnetic layer, a second nonmagnetic layer, and a third magnetic layer. The first magnetic layer has a variable magnetization direction. The second magnetic layer has an invariable magnetization direction and includes a nonmagnetic material film and a magnetic material film. The first nonmagnetic layer is arranged between the first magnetic layer and the second magnetic layer. The second nonmagnetic layer is arranged on a surface of the second magnetic layer. The third magnetic layer is arranged on a surface of the second nonmagnetic layer. The second nonmagnetic layer is in contact with the nonmagnetic material film included in the second magnetic layer.
摘要:
According to one embodiment, a magnetoresistive element includes first, second and third magnetic layers, and first and second nonmagnetic layers. The third magnetic layer has stack layers including a first stack layer close to the second magnetic layer, and a second stack layer far from the second magnetic layer. Each of the first and second stack layers includes a first layer made of a ferromagnetic material and a second layer made of a nonmagnetic material, and a first ratio of a film thickness of the first layer to that of the second layer in the first stack layer is higher than a second ratio of a film thickness of the first layer to that of the second layer in the second stack layer.
摘要:
According to one embodiment, a magnetic memory is disclosed. The magnetic memory includes a substrate, and a magnetoresistive element provided on the substrate. The magnetoresistive element includes a first magnetic layer, a tunnel barrier layer on the first magnetic layer, and a second magnetic layer on the tunnel barrier layer. The first magnetic layer or the second magnetic layer includes a first region, second region, and third region whose ratios of crystalline portion are higher in order closer to the tunneling barrier.
摘要:
There is provided a magnetoresistance element including a free layer that includes a first ferromagnetic layer and a second ferromagnetic layer whose magnetization directions are equal to each other and a nonmagnetic film intervening between the first and second ferromagnetic layers, a pinned layer including a third ferromagnetic layer that faces the free layer, and a nonmagnetic layer intervening between the free layer and the pinned layer, the nonmagnetic film containing a material selected from the group including titanium, vanadium, zirconium, niobium, molybdenum, technetium, hafnium, tungsten, rhenium, alloys thereof, semiconductors and insulators.
摘要:
According to one embodiment, a magnetoresistive element includes a bottom electrode, a first magnetic layer with an magnetic axis substantially perpendicular to a film plane thereof, a first interface layer, an MgO insulating layer, a second interface layer, a second magnetic layer with an magnetic axis nearly perpendicular to a film plane thereof, and a top electrode. The magnetoresistive element has a diffusion barrier layer between the first magnetic layer and the first interface layer when the first magnetic layer contains Pt or Pd, and a diffusion barrier layer between the second magnetic layer and the second interface layer when the second magnetic layer contains Pt or Pd. The diffusion barrier layer is an Hf film of thickness 0.6 nm to 0.8 nm.
摘要:
According to one embodiment, a magnetoresistance effect element includes a reference layer, a shift canceling layer, a storage layer provided between the reference layer and the shift canceling layer, a tunnel barrier layer provided between the reference layer and the storage layer, and a spacer layer provided between the shift canceling layer and the storage layer, wherein a pattern of the storage layer is provided inside a pattern of the shift canceling layer when the patterns of the storage layer and the shift canceling layer are viewed from a direction perpendicular to the patterns of the storage layer and the shift canceling layer.
摘要:
According to one embodiment, a magnetoresistive element comprises a storage layer having perpendicular magnetic anisotropy with respect to a film plane and having a variable direction of magnetization, a reference layer having perpendicular magnetic anisotropy with respect to the film plane and having an invariable direction of magnetization, a tunnel barrier layer formed between the storage layer and the reference layer and containing O, and an underlayer formed on a side of the storage layer opposite to the tunnel barrier layer. The reference layer comprises a first reference layer formed on the tunnel barrier layer side and a second reference layer formed opposite the tunnel barrier layer. The second reference layer has a higher standard electrode potential than the underlayer.