摘要:
An apparatus is described having a plurality of storage cells coupled between a first bit line and a second bit line. The apparatus also has a first transistor that pre-charges the first bit line and provides a first supply of current for one or more leakage currents drawn from the first bit line by any of the plurality of storage cells. The apparatus also has a second transistor that pre-charges the second bit line and provides a second supply of current for one or more leakage currents drawn from the second bit line by any of the plurality of storage cells.
摘要:
An apparatus is described having a plurality of storage cells coupled between a first bit line and a second bit line. The apparatus also has a first transistor that pre-charges the first bit line and provides a first supply of current for one or more leakage currents drawn from the first bit line by any of the plurality of storage cells. The apparatus also has a second transistor that pre-charges the second bit line and provides a second supply of current for one or more leakage currents drawn from the second bit line by any of the plurality of storage cells.
摘要:
A signal generating circuit is provided. The signal generating circuit may include a plurality of delay circuits coupled to provide a plurality of control signals, a weighted-sum circuit to receive the plurality of control signals and to provide an output analog signal, and a comparator circuit to compare the output analog signal with a voltage and to provide a pulse width modulated (PWM) signal based on the comparison.
摘要:
An approach for providing timing-closed FinFET designs from planar designs is disclosed. Embodiments include: receiving one or more planar cells associated with a planar design; generating an initial FinFET design corresponding to the planar design based on the planar cells and a FinFET model; and processing the initial FinFET design to provide a timing-closed FinFET design. Other embodiments include: determining a race condition associated with a path of the initial FinFET design based on a timing analysis of the initial FinFET design; and increasing delay associated with the path to resolve hold violations associated with the race condition, wherein the processing of the initial FinFET design is based on the delay increase.
摘要:
An approach for providing timing-closed FinFET designs from planar designs is disclosed. Embodiments include: receiving one or more planar cells associated with a planar design; generating an initial FinFET design corresponding to the planar design based on the planar cells and a FinFET model; and processing the initial FinFET design to provide a timing-closed FinFET design. Other embodiments include: determining a race condition associated with a path of the initial FinFET design based on a timing analysis of the initial FinFET design; and increasing delay associated with the path to resolve hold violations associated with the race condition, wherein the processing of the initial FinFET design is based on the delay increase.
摘要:
A capacitor includes a substrate (110, 210), a first electrically insulating layer (120, 220) over the substrate, and a fin (130, 231) including a semiconducting material (135) over the first electrically insulating layer. A first electrically conducting layer (140, 810) is located over the first electrically insulating layer and adjacent to the fin. A second electrically insulating layer (150, 910) is located adjacent to the first electrically conducting layer, and a second electrically conducting layer (160, 1010) is located adjacent to the second electrically insulating layer. The first and second electrically conducting layers together with the second electrically insulating layer form a metal-insulator-metal stack that greatly increases the capacitance area of the capacitor. In one embodiment the capacitor is formed using what may be referred to as a removable metal gate (RMG) approach.
摘要:
A capacitor includes a substrate (110, 210), a first electrically insulating layer (120, 220) over the substrate, and a fin (130, 231) including a semiconducting material (135) over the first electrically insulating layer. A first electrically conducting layer (140, 810) is located over the first electrically insulating layer and adjacent to the fin. A second electrically insulating layer (150, 910) is located adjacent to the first electrically conducting layer, and a second electrically conducting layer (160, 1010) is located adjacent to the second electrically insulating layer. The first and second electrically conducting layers together with the second electrically insulating layer form a metal-insulator-metal stack that greatly increases the capacitance area of the capacitor. In one embodiment the capacitor is formed using what may be referred to as a removable metal gate (RMG) approach.
摘要:
A capacitor includes a substrate (110, 210), a first electrically insulating layer (120, 220) over the substrate, and a fin (130, 231) including a semiconducting material (135) over the first electrically insulating layer. A first electrically conducting layer (140, 810) is located over the first electrically insulating layer and adjacent to the fin. A second electrically insulating layer (150, 910) is located adjacent to the first electrically conducting layer, and a second electrically conducting layer (160, 1010) is located adjacent to the second electrically insulating layer. The first and second electrically conducting layers together with the second electrically insulating layer form a metal-insulator-metal stack that greatly increases the capacitance area of the capacitor. In one embodiment the capacitor is formed using what may be referred to as a removable metal gate (RMG) approach.
摘要:
An on-chip memory cell comprises a tri-gate access transistor (145) and a tri-gate capacitor (155). The on-chip memory cell may be an embedded DRAM on a three-dimensional tri-gate transistor and capacitor structures which is fully compatible with existing tri-gate logic transistor fabrication process. Embodiments of the invention use the high fin aspect ratio and inherently superior surface area of the tri-gate transistors to replace the “trench” capacitor in a commodity DRAM with an inversion mode tri-gate capacitor. The tall sidewalls of the tri-gate transistor provide large enough surface area to provide storage capacitance in a small cell area.