Abstract:
Described is an apparatus for improving read and write margins. The apparatus comprises: a sourceline; a first bitline; a column of resistive memory cells, each resistive memory cell of the column coupled at one end to the sourceline and coupled to the first bitline at another end; and a second bitline in parallel to the first bitline, the second bitline to decouple read and write operations on the bitline for the resistive memory cell. Described is also an apparatus which comprises: a sourceline; a bitline; a column of resistive memory cells, each resistive memory cell in the column coupled at one end to the sourceline and coupled to the bitline at another end; and sourceline write drivers coupled to the bitline and the sourceline, wherein the sourceline write drivers are distributed along the column of resistive memory cells.
Abstract:
Described is an apparatus and system for improving write margin in memory cells. In one embodiment, the apparatus comprises: a first circuit to provide a pulse signal with a width; and a second circuit to receive the pulse signal and to generate a power supply for the memory cell, wherein the second circuit to reduce a level of the power supply below a data retention voltage level of the memory cell for a time period corresponding to the width of the pulse signal. In one embodiment, the apparatus comprises a column of memory cells having a high supply node and a low supply node; and a charge sharing circuit positioned in the column of memory cells, the charge sharing circuit coupled to the high and low supply nodes, the charge sharing circuit operable to reduce direct-current (DC) power consumption.
Abstract:
In some embodiments, a memory array is provided with cells that when written to or read from, can have modified supplies to enhance their read stability and/or write margin performance. Other embodiments may be disclosed and/or claimed.
Abstract:
Methods and systems to read a logic value stored in a magnetic tunnel junction (MTJ)-based memory cell based on a pulsed read current, with time between pulses to permit the MTJ to relax towards the magnetization orientation between the pulses, which may reduce build-up of momentum within the MTJ, and which may reduce and/or eliminate inadvertent re-alignment of a magnetization orientation. A sequence of symmetric and/or non-symmetric pulses may be applied to a wordline (WL) to cause a pre-charged bit line (BL) capacitance to discharge a pulsed read current through the MTJ, resulting in a corresponding sequence of voltage changes on the BL. The BL voltage changes may be integrated over the sequence of read current pulses, and a stored logic value may be determined based on the integrated voltage changes. The pre-charged BL capacitance may also serve as the voltage integrator.
Abstract:
Described is an apparatus and system for improving write margin in memory cells. In one embodiment, the apparatus comprises: a first circuit to provide a pulse signal with a width; and a second circuit to receive the pulse signal and to generate a power supply for the memory cell, wherein the second circuit to reduce a level of the power supply below a data retention voltage level of the memory cell for a time period corresponding to the width of the pulse signal. In one embodiment, the apparatus comprises a column of memory cells having a high supply node and a low supply node; and a charge sharing circuit positioned in the column of memory cells, the charge sharing circuit coupled to the high and low supply nodes, the charge sharing circuit operable to reduce direct-current (DC) power consumption.
Abstract:
A NAND architecture for selecting a word line driver in a DRAM is disclosed. Separately decoded addresses in the low, mid and high ranges are used to select a final word line driver. The output of the word line driver is at a potential negative with respect to ground for a deselected word line and a positive potential more positive than the power supply potential for a selected word line.
Abstract:
In embodiments of the present invention, a static random access memory (SRAM) device has an array of memory cells in columns and rows. An individual memory cell includes two PMOS pull-up devices coupled to two NMOS pull-down devices. In READ mode and/or STANDBY/NO-OP mode of a column, the two PMOS pull-up devices are effectively strengthened by forward biasing the PMOS n-wells or by utilizing a lower threshold voltage PMOS device by implanting a lower halo dose in the PMOS device. In WRITE mode of a column, the two PMOS pull-up devices are effectively weakened by reverse biasing the PMOS n-wells or by coupling the sources of the NMOS devices to virtual ground (VSSi).
Abstract:
A dynamic multi-voltage memory array features SRAM cells that are subjected to different biasing conditions, depending on the operating mode of the cells. The selected SRAM cell receives a first voltage when a read operation is performed, and receives a second voltage when a write operation is performed. By biasing the cell differently for the two distinct operations, a total decoupling of the read and write operations is achieved. The disclosed memory array, as well as future SRAM designs incorporating the multi-voltage capability thus avoid the conflicting requirements of read and write operations. Random single-bit failures of the memory array are reduced, due to the improvement in read stability and write margin.
Abstract:
An offset line to substantially cancel the capacitive coupling effects of a select line to a memory cell. When the select line transitions to cause a stored memory state in the memory cell to be placed onto a sense line, capacitive coupling from the select line to the sense line is substantially cancelled by capacitive coupling, of an opposite polarity, from an offset line to the sense line. Without the opposing effects of the offset line, the capacitive coupling from the select line would raise the pre-charge voltage level on the sense line, which would then require a longer time to discharge down to the input threshold of a sense gate that detects the stored state that was in the memory cell.
Abstract:
A six transistor SRAM cell for single-ended sensing is described along with related memory architecture. The cell comprises a bistable circuit connected to complementary bit lines through a pair of passgate transistors. One of the passgate transistors has a lower threshold voltage than the other transistor. The lower threshold voltage is used to couple the cell to a single-ended sense amplifier through one of the bit lines. In one embodiment fewer than all the bit lines in an array are precharged in order to reduce power consumption in the array.