Abstract:
A control unit of a change dispenser calculates the fraction amount less than unit of the par value of 5000-yen bill for the balance amount and the number of 1000-yen bill equivalent to the fraction amount, calculates each numbers of 1000-yen bill and 5000-yen bill needed to fill a balance amount obtained by subtracting the amount of 1000-yen bill based on the number calculated from the balance amount, according to 1000-yen bill and 5000-yen bill at a given ratio, determines the balance number of 1000-yen bill by adding the number of 1000-yen bill calculated to the number of 1000-yen bill calculated and determines the number of 5000-yen bill calculated as the balance number of 5000-yen bill.
Abstract:
An ECU controls to inject a small amount of fuel in an expansion/exhaust stroke under constraint of the minimum fuel injection capability of an injector at the time of warming-up of a catalyst. The ECU controls injection of fuel in expansion/exhaust strokes (expansion/exhaust stroke injection) at the time of warming-up of a catalyst. Fuel injection control is performed so that when temperature of the catalyst becomes higher than a predetermined temperature, fuel injection in the expansion/exhaust strokes is performed for a period of a predetermined ratio in a selected cycle period. The expansion/exhaust stroke injection is not performed in the other period. By effectively utilizing oxygen absorbed on the catalyst, while suppressing slip HC, the activation time of the catalyst can be shortened.
Abstract:
An exhaust purification system for an internal combustion engine is provided that can maintain the NOx purification rate of a selective reduction catalyst at near the maximum thereof. The exhaust purification system is provided with an oxidation catalyst and CSF provided in the exhaust plumbing of the engine, a selective reduction catalyst that is provided in the exhaust plumbing on the downstream side of oxidation catalyst and CSF, and selectively reduces NOx in the exhaust, and a NO2 sensor that detects NO2 in the exhaust inside of the exhaust plumbing on the downstream side of the selective reduction catalyst. An ECU executes NO2-NOx ratio decrease processing to cause the NO2-NOx ratio corresponding to the ratio of NO2 to NOx in the exhaust flowing into the selective reduction catalyst to decrease, in a case of a detection value Vno2 from the NO2 sensor being greater than a predetermined value Vno2_th.
Abstract:
A control system for an internal combustion engine is disclosed. In the control system, an engine state parameter is calculated using a self-organizing map for calculating a predetermined output parameter according to at least one engine operating parameter which indicates an operating condition of said engine. The engine state parameter indicates an engine state which is relevant to the predetermined output parameter.
Abstract:
An EGR control apparatus for an internal combustion engine, which is capable of properly controlling an inert gas amount of two types of EGR gas supplied to cylinders of the engine via two paths different from each other, thereby making it possible to ensure a stable combustion state, reduced exhaust emissions, and improve operability. The EGR control apparatus includes low-pressure and high-pressure EGR devices, and an ECU. The ECU controls the low-pressure and high-pressure EGR gas amounts according to engine speed and demanded torque, and when a combination of engine speed and demanded torque is in a predetermined region, the low-pressure and high-pressure EGR gas amounts are controlled such that inert gas in low-pressure EGR gas exceeds in amount inert gas in high-pressure EGR gas, and the former more exceeds the latter as engine speed is higher or demanded torque is larger.
Abstract:
An optimum control parameter in control of an internal combustion engine and the like is searched. In a plurality of search cycles, a control parameter that maximizes an output of an object to be controlled which shows an output realized by a given control parameter is searched using control parameters. The control parameters are provided at each search cycle by a predetermined algorithm. A periodic function of a predetermined period and a correction value obtained in a previous search cycle are added to the control parameters to obtain an input parameters to the object. An output obtained from the object with the input parameters is multiplied by the periodic function to obtain a correction value for correcting the control parameters such that the search converges.
Abstract:
A control input (DUT) for controlling a heater (13) which heats an active element (10) of an exhaust gas sensor (8) includes at least one of another component depending on the difference between temperature data of the active element (10) and a target temperature, a component depending on the target temperature, and a component depending on the temperature data of the active element (10). The control input is determined by an optimum control algorithm. A component depending on the temperature of an exhaust gas and the component depending on the target temperature are determined based on a predictive control algorithm. The temperature of the active element (10) of the exhaust gas sensor (8) is thus controlled stably at a desired temperature.
Abstract:
A device and a method for determining the trouble of a cylinder pressure sensor without increasing cost calculates the cylinder pressure of an internal combustion engine based on an output from the cylinder sensor installed in the engine and calculates a drift parameter indicating the drift amount of the cylinder pressure based on the cylinder pressure. When the drift parameter is not within a specified range, the device determines that the cylinder pressure sensor is defective. The specified range can be set based on the behavior of the cylinder pressure. A correction factor is obtained according to the operating state of the engine, and the drift parameter is corrected with the correction factor. A specified search signal is superimposed on the output from the cylinder pressure sensor. The cylinder pressure is calculated based on the output from the cylinder pressure sensor on which the search signal was superimposed.
Abstract:
A control system for an internal combustion engine, which is capable of ensuring excellent fuel economy of the engine and enhancing the responsiveness of the output of the engine when acceleration is demanded. The control system calculates a lift control input for controlling a variable valve lift mechanism, based on a cam phase of a variable cam phase mechanism, and calculates a demanded acceleration indicative of the degree of acceleration demanded of the engine. Further, the control system calculates a value of phase control input for controlling the variable cam phase mechanism with priority to the engine output, and calculates a value of the same with priority to fuel economy of the engine, and selects between the values of phase control input, based on the demanded acceleration.
Abstract:
A control system for an internal combustion engine is disclosed. In the control system, an engine state parameter is calculated using a self-organizing map for calculating a predetermined output parameter according to at least one engine operating parameter which indicates an operating condition of said engine. The engine state parameter indicates an engine state which is relevant to the predetermined output parameter.