Abstract:
An inverter for a lighting device including one or more solid state light sources is used to power a secondary load, such as a cooling device, sensor, or control with an auxiliary power circuit that provides a selectable auxiliary voltage to the secondary load. The auxiliary power circuit includes a voltage regulation circuit and a voltage selection circuit. The voltage selection circuit provides a feedback voltage to the voltage regulation circuit which his indicative of auxiliary output voltage. The voltage regulation circuit operates based on the feedback voltage and a reference voltage to adjust the auxiliary voltage to a level that differs from the input voltage from the inverter.
Abstract:
A mobile computing device comprises a wireless transceiver and a processing circuit. The processing circuit is configured to identify a location, to identify a wireless access point within a predetermined distance of the location, to detect a wireless access point identifier using the wireless transceiver, to compare the detected wireless access point identifier to the identified wireless access point, and to initiate location determination based on the comparison.
Abstract:
A ballast for dimming a lamp is provided. The ballast includes an inverter circuit for providing a lamp current for energizing the lamp and a dim interface for receiving an input indicative of a selected lighting level. A control circuit is connected to the dim interface for generating a pulse-width-modulated signal having a duty cycle corresponding to the selected lighting level. A switching network is connected to the control circuit for receiving the pulse-width-modulated signal. The switching network operates between a conductive state and a non-conductive state as a function of the pulse-width-modulated signal. An impedance device is connected across the switching network and is configured for connecting in series with the lamp so that the impedance device receives the lamp current when the switching network is operating in the non-conductive state and the lamp current bypasses the capacitor when the switching network is operating in the conductive state.
Abstract:
A network device component receives traffic, determines whether the traffic is host bound traffic or non-host bound traffic, and classifies, based on a user-defined classification scheme, the traffic when the traffic is host bound traffic. The network device component also assigns, based on the classification, the classified host bound traffic to a queue associated with network device component for forwarding the classified host bound traffic to a host component of the network device.
Abstract:
A bi-level lamp ballast to selectively operate two lamps is provided. The ballast includes a control circuit having an input, connected to a switching network, and an output, which provides a particular control signal based on the state of the switching network. The ballast also includes respective lamp control switches, each having respective outputs. The first switch is connected to the output and a ballast power supply. In its first state, it connects the ballast power supply to its first output, and in its second state, it connects the ballast power supply to its second output. The second switch is connected to the output and a ground. In its first state, it connects the ground to its first output, and in its second state, it connects the ground to its second output. The state of each lamp control switch depends on the control signal generated by the control circuit.
Abstract:
A ballast to energize a lamp is provided. The ballast comprises a buck converter connected to an inverter via a switching component. The buck converter includes a transistor, a capacitor, a diode, and an inductor. The switching component has a predetermined breakover voltage value and is configured to provide a start up signal to the inverter when voltage at the switching component increases to the predetermined breakover voltage value. A control circuit is configured to monitor the voltage at the switching component while the voltage at the switching component increases to the predetermined breakover voltage, and is configured to generate a gate drive pulse at a gate terminal of the transistor when the voltage at the switching component reaches a predetermined voltage that is less than the breakover voltage of the switching component.
Abstract:
A electrodeless lamp including a fluorescent discharge vessel, a tip, an amalgam, a lamp core, and a heater. The vessel contains a gas having a partial vapor pressure and a fluorescent material. The tip has an inner end engaging the vessel, and an opening in communication with the gas. The amalgam is positioned within the opening, in heat transfer relation with the tip. When the temperature of the amalgam decreases, mercury vapor in the gas condensates onto the amalgam, causing a decrease in the partial vapor pressure of the gas. The opposite occurs when the amalgam temperature increases. The lamp core generates a magnetic flux, causing an electrical discharge in the gas. The heater includes a positive temperature coefficient connected to a winding of the lamp core. The heater is in heat transfer relation with the tip and heats the tip when the electrodeless lamp is in a dimming mode.
Abstract:
Methods and compositions for forming durable porous low refractive index coatings on substrates are provided. In one embodiment, a method of forming a porous coating on a substrate is provided. The method comprises coating a substrate with a sol-formulation comprising a silane-based binder, silica-based nanoparticles, and an inter-particle interaction modifier for regulating interactions between the silica-based nanoparticles and annealing the coated substrate. Porous coatings formed according to the embodiments described herein demonstrate good optical properties (e.g., a low refractive index) while maintaining good mechanical durability due to the presence of the inter-particle interaction modifier. The inter-particle interaction modifier increases the strength of the particle network countering capillary forces produced during drying to maintain the porosity structure.
Abstract:
A network device receives a packet with a multicast nexthop identifier, and creates a mask that includes addresses of egress packet forwarding engines, of the network device, to which to provide the packet. The network device divides the mask into two portions, generates two copies of the packet, provides a first portion of the mask in a first copy of the packet, and provides a second portion of the mask in a second copy of the packet. The network device also forwards the first copy of the packet to an address of a first egress packet forwarding engine provided in the first portion of the mask, and forwards the second copy of the packet to an address of a second egress packet forwarding engine provided in the second portion of the mask.
Abstract:
Embodiments of the invention generally relate to methods and compositions for forming conformal coatings on textured substrates. More specifically, embodiments of the invention generally relate to sol-gel processes and sol-gel compositions for forming low refractive index conformal coatings on textured transparent substrates. In one embodiment a method of forming a conformal coating on a textured glass substrate is provided. The method comprises coating the textured glass substrate with a sol-gel composition comprising a solidifier. It is believed that use of the solidifier expedites the sol-gel transition point of the sol-gel composition leading to more conformal deposition of coatings on textured substrates.