Abstract:
An AC-to-DC power supply apparatus and a power control structure and method thereof are provided. The provided method includes: making an AC-to-DC converter in the AC-to-DC power supply apparatus convert an AC input voltage in response to a driving signal, so as to generate a DC output voltage; sampling a rectified voltage relating to the AC input voltage, so as to provide a sampling signal; providing an output feedback signal relating to an output of the AC-to-DC converter; multiplying the sampling signal by the output feedback signal, so as to provide a product signal; performing a signal modulation on the product signal, so as to generate the driving signal to control a switching of a main power switch in the AC-to-DC converter; and performing an amplitude-limiting process on the sampling signal or the product signal.
Abstract:
A LED driving apparatus and a LED illumination system using the same are provided. The LED driving apparatus adapted to drive a LED load having at least one power specification includes a driving circuit, an output detecting circuit and an output adjusting circuit. The driving circuit provides an adjustable output current for driving the LED load. The output detecting circuit is coupled to the driving circuit and the LED load for detecting a driving voltage of the LED load to generate a first detecting signal. The driving circuit drives the LED load under a constant current in response to the first detecting signal. The output adjusting circuit is coupled to the output detecting circuit. The output adjusting circuit is controlled to adjust a signal level of the first detecting signal, such that the adjustable output current has at least one current adjusting range.
Abstract:
A resonant power conversion apparatus including a transformer-based resonant converter and first and second switch control units is provided. The transformer-based resonant converter includes a primary switch circuit and a secondary output circuit configured to provide an output voltage to a load. The first switch control unit is configured to control an ON/OFF operation of the primary switch circuit in response to a status of the load. The second switch control unit is configured to determine whether to activate or inactivate the first switch control unit. When the status of the load is the light-loading or the no-loading, the first switch control unit intermittently controls the ON/OFF operation of the primary switch circuit, and meanwhile, the first switch control unit is inactivated during the primary switch circuit is disabled, so as to substantially reduce the light-loading or no-loading loss of the resonant power conversion apparatus.
Abstract:
A non-isolated inverter including a DC input-side, a capacitor connected in parallel with the DC input-side, an AC output-side connected in parallel with a load, and first and second bridge-arm units is provided. The first and second bridge-arm units are connected in parallel with the capacitor. The first bridge-arm unit includes a series forward-connection of upper and lower switch-elements, where a common-node of upper and lower switch-elements and a supplying terminal of the second bridge-arm unit are respectively connected to two terminals of the AC output-side. The upper and lower switch-elements are respectively turned on in positive and negative half cycles of an output current of the non-isolated inverter, and the generation of common-mode currents in the non-isolated inverter is suppressed under a clamping action between the upper and lower switch-elements due to there are no high-frequency voltages on the parasitic-capacitors from the non-isolated inverter to the ground.
Abstract:
A DC-to-DC converter adapted for generating a power voltage required by a load and including a buck circuit and a boost circuit is provided. The buck circuit is used for receiving a DC input voltage, and outputting the power voltage by performing a buck process to the DC input voltage, or directly outputting the DC input voltage according to a first control signal. The boost circuit is used for receiving the power voltage or the DC input voltage both output from the buck circuit, and outputting the power voltage to the load by performing a boost process to the DC input voltage output from the buck circuit, or directly outputting the power voltage output from the buck circuit to the load according to a second control signal.
Abstract:
An isolated gate driver including a driving control circuit, an isolated transformer, an anti-circuit and a secondary processing circuit is provided. The driving control circuit is configured to generate a driving PWM signal for driving a power switch tube. The isolated transformer has a primary winding and a secondary winding. The anti-circuit is connected between the driving control circuit and the primary winding of the isolated transformer, and is configured to suppress a variation of an induced voltage in the secondary winding of the isolated transformer when a duty cycle of the driving PWM signal is sharply decreased. The secondary processing circuit is connected in parallel with the secondary winding of the isolated transformer, and is configured to perform a voltage clamping action on a gate-source voltage of the power switch tube when the duty cycle of the driving PWM signal is sharply decreased.
Abstract:
A power supply apparatus is provided, and which includes a power conversion circuit, a control chip with soft-start function and a short protection circuit. The power conversion circuit is configured to provide a DC output voltage to a load in response to an output pulse-width-modulation (PWM) signal. The control chip is operated under a DC input voltage, and configured to generate the output PWM signal to control the operation of the power conversion circuit. The short protection circuit is configured to pull-down the level of a soft-start pin of the control chip, so as to substantially/significantly reduce the frequency and duty cycle of the output PWM signal, and then substantially/significantly reduce the current flowing through the shorted load.
Abstract:
A power supply apparatus is provided. The provided power supply apparatus has a power backup mechanism, in which a main DC power and a backup DC power are switched by a fast switching circuit composed of a plurality of switch transistors. Since the switching time of each switch transistor is substantially shorter than that of the conventional relay, the backup DC power can be conducted to the input of the multi-output DC-DC converter at a quite-short time even though the main DC power is abnormal. Accordingly, the output of the multi-output DC-DC converter still can continuously and stably supply the operation power required by the load.
Abstract:
A power transforming circuit board includes a substrate and at least one power output structure. The substrate has at least one power transforming circuit and at least one pair of power input holes. The power output structure is disposed on the substrate. Each power output structure is electrically connected with one corresponding power transforming circuit. Each power output structure has at least one cable connecting hole. The normal direction of each power output structure is oriented at an angle with respect to the normal direction of the substrate.
Abstract:
A resonant converter equipped with a phase shifting output circuit includes a resonant circuit to receive input power and regulate to become at least one resonant power, a switch unit to switch an ON period for the input power to pass through the resonant circuit and a power transformation circuit to regulate the resonant power and output a transformed power. The resonant converter further has a primary output circuit and at least one secondary output circuit. The primary output circuit regulates the transformed power to become a primary output power. A resonant control unit captures a feedback signal from the primary output circuit and generates a resonant control signal. A phase shifting control unit receives the resonant control signal and regulate to become a phase shifting driving signal. The secondary output circuit is controlled by the phase shifting driving signal and provides a secondary output power.