Abstract:
A phosphor for a low voltage display device having a host and a metal salt or metal oxide dispersed on the surface of the host with improved luminescence efficiency which can be prepared at a low temperature.
Abstract:
Disclosed is a liquid crystal display cell comprising first and second panels spaced apart from each other and extending parallel to each other, first and second conductive layers respectively disposed on and between the first and second panels, first and second orientation layers covering the first and second conductive layers, respectively, and a liquid crystal layer disposed between the first and second orientation layer. Each of the first and second orientation layers comprises a polymer material and a liquid crystal material dispersed within the polymer.
Abstract:
There is provided a shadow mask assembly for a color cathode ray tube (CRT), including a mask plate through which a multitude of electron beam passing holes are formed, a rim portion which extends from the edges of the mask plate and has a smaller radius of curvature than the radius of curvature of the mask plate, a skirt portion which extends perpendicularly from at least one of the longer and shorter edges of the rim portion, and a frame which is combined with the skirt portion and supports the skirt portion.
Abstract:
A field emission display includes a substrate with a plurality of cathode layers provided thereon. A plurality of micro tips are provided on each of the cathode layers. A plurality of gate insulating layers are also provided on the cathode layers, each of the gate insulating layers having a plurality of holes for accommodating each unit of the micro tips. A plurality of gate electrodes are provided on the gate insulating layers, each of the gate electrodes having a plurality of holes corresponding to each hole of the plurality of gate insulating layers, each of the plurality of gate insulating layers and each of the plurality of gate electrodes being alternately provided on each other.
Abstract:
A manufacturing method of a light-emitting diode is provided. The light-emitting diode manufactured by the steps of coating solution containing p-type or n-type impurities on a porous silicon layer, thereby forming a p/n junction through a thermal treatment has excellent light-emitting efficiency. Also, the process is simple compared to an implantation method, and further the manufacturing is since the thermal treatment can be performed at a relatively low temperature.
Abstract:
A touch panel input device includes a touch panel having a lower layer including a resistive conductor and an upper layer including a dielectric, a driving circuit for applying a driving signal to points on the lower layer, a voltage detecting circuit for converting a current flowing through each point into a voltage signal, a switching circuit for switching the voltage signal to generates a coordinate signal, an analog-to-digital converter for converting the coordinate signal into digital coordinate data, and protrusions, each protrusion including a resistive conductor, located on the upper layer of the touch panel.
Abstract:
A cathode, an electron gun, and a cathode ray tube include a ferroelectric electron source. The cathode includes a substrate; a lower electrode layer on the substrate; a cathode layer, on the lower electrode layer, the cathode layer including a ferroelectric emitter; an upper electrode layer, on the ferroelectric cathode layer, the upper electrode layer having electron emitting regions comprising a plurality of electron emission holes for passing electrons emitted from the ferroelectric emitter; and a driving electrode layer, supported by the upper electrode layer, for controlling passage of electrons through the electron emitting regions in the upper electrode layer and the driving electrode layer.
Abstract:
A method for manufacturing a screen including forming a phosphor layer on an inner surface of a panel where a black matrix layer is present; applying and drying a filming composition comprising an acryl emulsion having a molecular weight of 1.5-2.5 million and a decomposition starting temperature of 200.degree.-250.degree. C. as a main component on the phosphor layer to form a film; and forming a meal layer on the film.
Abstract:
A process for purification of lithium battery electrolyte solutions is provided whereby the concentrations of trace amounts of impurities such as water in the electrolyte solutions can be reduced. Such electrolyte solutions generally include at least one lithium salt solute contained in at least one organic solvent. Lithium and a second metal with which lithium is capable of intercalating are first placed in electrical contact with one another and then placed in the electrolyte solution. Preferably, aluminum is used as the second metal and the two metals are provided as separate layers that are pressed together in a rolling mill to form a bimetallic sheet. The solution containing the bimetallic sheet is agitated to encourage the reactions which reduce the levels of impurities such as water in the electrolyte solution. The resulting purified solution is then filtered to remove any remaining metal or reaction products. The resulting purified electrolyte solution can be used to make lithium batteries having improved cycling characteristics over batteries using unpurified electrolyte solution.
Abstract:
An improved current collector for use with lithium ion batteries includes an aluminum grid of the type used for making conventional current collectors that is plated with a layer of zinc, the outermost portion of which is oxidized to zinc oxide. The current collector is made by first cleaning an aluminum grid in an aqueous basic solution to remove its outer layer of alumina. The cleaned aluminum grid is then plated with zinc by contact with an aqueous solution of zinc oxide. The plated aluminum grid is rinsed and dried in air to oxidize the outer surface of the zinc and form an outer layer of zinc oxide. The resulting zinc-plated current collector can be made into a battery with a higher conductivity at the interface between the current collector and the electrode active materials than a battery made with a conventional aluminum current collector. It also has a rough outer surface which improves its adhesion to the polymeric layers used in constructing a plastic lithium ion battery.