Abstract:
Provided is a display apparatus including a plurality of subpixels and configured to emit light based on each of the plurality of subpixels, the display apparatus including a substrate, a driving layer provided on the substrate and including a driving element which is configured to apply current to the display apparatus, a first electrode electrically connected to the driving layer, a first semiconductor layer provided on the first electrode, an active layer provided on the first semiconductor layer, a second semiconductor layer provided on the active layer, a second electrode provided on the second semiconductor layer, and a reflective layer provided on the second semiconductor layer, wherein light emitted from the active layer resonates between the first electrode and the reflective layer.
Abstract:
A wavelength converting layer may have a glass or a silicon porous support structure. The wavelength converting layer may also have a cured portion of wavelength converting particles and a binder laminated onto the porous glass or silicon support structure.
Abstract:
A method for producing a silicon substrate, including the steps of providing a silicon substrate having an essentially planar silicon surface, producing a porous silicon surface having a plurality of pores, in particular having macropores and/or mesopores and/or nanopores, applying a filling material that is to be inserted into the silicon, which has a diameter that is less than a diameter of the pores, inserting the filling material into the pores and removing the excess filling material form the silicon surface, if necessary, and tempering the silicon substrate that is furnished with the filling material that has been filled into the pores, at a temperature between ca. 1000° C. and ca. 1400° C., in order to close the generated pores again and to enclose the filling material.
Abstract:
The present invention relates to a vertical-alignment type porous silicon including a first pore 11 which is formed in an upper side of the silicon, a second pore 12 which is formed in a lower side of the first pore 11 and has a diameter that is larger or smaller than a diameter of the first pore 11, a third pore 13 which is formed in a lower side of the second pore 12 and has a diameter that is identical or similar to the diameter of the first pore 11, and one or more pore parts 11, 12, and 13 which includes the first pore 11, the second pore 12, and the third pore 13. A pore part having a double structure is formed in a silicon. Thus, the silicon having an improved surface area can be obtained as compared to a known porous silicon, and since different electronic materials can be implanted into different pores, it is easy to form interfaces of the implanted electronic materials.
Abstract:
An electroluminescent device comprises a porous silicon region adjacent a bulk silicon region, together with a top electrical contact of transparent indium tin oxide and a bottom electrical contact of aluminium. The device includes a heavily doped region to provide an ohmic contact. The porous silicon region is fabricated by anodizing through an ion-implanted surface layer of the bulk silicon. The silicon remains unannealed between the ion-implantation and anodization stages. The device has a rectifying p-n junction within the porous silicon region.
Abstract:
The present invention provides new and improved methods for making crystalline semiconductor thin films which may be bonded to different kinds of substrates. The thin films may be flexible. In accordance with preferred methods, a multi-layer porous structure including two or more porous layers having different porosities is formed in a semiconductor substrate. A semiconductor thin film is optionally grown on the porous structure. Electrodes and/or a desired support substrate may be attached to the grown film. The grown film or an upper portion of the semiconductor substrate is separated from the semiconductor substrate along a line of weakness defined in the porous structure. The separated thin film attached to the support substrate may be further processed to provide improved film products, solar panels and light emitting diode devices. These thin film semiconductors are excellent in crystallinity and may be inexpensively produced, thereby enabling production of solar cells and light emitting diodes at lower cost.
Abstract:
In order to clean a porous body in a short time without causing any change in its structure, the porous body is cleaned after the anodization is completed with a cleaning solution containing at least one of an alcohol and acetic acid.
Abstract:
At least a one conductivity type nanostructure PS layer whose thickness is controlled, and the opposite conductivity type nanostructure PS layer and a one conductivity type mesostructure PS layer arranged in contact with both these sides are comprised. Since the one conductivity type nanostructure PS layer is formed by anodizing the non-degenerate n-type crystalline silicon layer whose thickness is established in advance, the thickness which can provides a maximum luminescence efficiency can be obtained correctly. Then a semiconductor light emitting device whose luminescence efficiency is improved without increasing an unnecessary series resistance is provided. An inexpensive semiconductor light emitting device having a large light emitting area can be provided, since silicon wafer having a large diameter can be employed as the material for light emission.
Abstract:
An electroluminescent device (10) comprises a porous silicon region (22) adjacent a bulk silicon region (20), together with a top electrical contact (24) of transparent indium tin oxide and a bottom electrical contact (26) of aluminum. The device includes a heavily doped region (28) to provide an ohmic contact. The porous silicon region (22) is fabricated by anodizing through an ion-implanted surface layer of the bulk silicon. The silicon remains unannealed between the ion-implantation and anodization stages. The device (10) has a rectifying p-n junction within the porous silicon region (22).
Abstract:
A process for producing a structured area of porous silicon on a substrate, in which silicon is etched and structured by means of illumination, includes selectively aiming the illumination during or after the formation of the porous silicon directly at a selected area of a p-doped substrate in order to effect etching and structuring of the porous silicon in another area. A device for carrying out the process includes an illuminating system for supporting the etching process and for structuring the porous silicon, in which the illuminating system is selectively aimed during or after the formation of the porous silicon directly at a selected area of p-doped substrate in order to effect etching and structuring of the porous silicon in another area.