Abstract:
An electronic device may be provided with a display mounted in a housing. A directional ambient light sensor may measure the intensity and direction of ambient light. The ambient light sensor may be mounted in alignment with a light sensor window formed in an inactive area of the display. The ambient light sensor may be formed from detectors on a semiconductor substrate. Incident light angle restriction structures may define openings for each detector. Each opening may be configured to allow light with a different range of angle of incidence values to be passed to a respective one of the detectors. The ranges of acceptance angle for adjacent detectors may overlap. A sensor may produce a diffuse light reading by processing ambient light data from a diffuse light detector and a directional light detector. The diffuse and directional light detectors may be formed on a common semiconductor substrate.
Abstract:
A system in accordance with the present disclosure comprises a sensor and an information processing apparatus that includes processing circuitry. The sensor is installed on a surface so that a detection direction of the sensor is at a non-zero angle from a line normal to the surface. The processing circuitry is configured to communicate with the sensor, calculate a position of a detection area, in which the sensor detects an object in a predetermined space, according to the non-zero angle and a location of the sensor on the surface, and create correspondence information that associates an area of the predetermined space with the detection area.
Abstract:
An optical detector may include an aperture, at least two photodetectors, and a measuring arrangement to quantify light detected at the photodetectors after passing through the aperture without the need for a lens. The aperture may be positioned between a light source and the two photodetectors to allow light from a light source to pass through the aperture to the photodetectors. The photodetectors may include PIN junction photodiodes and may be electrically isolated from each other, positioned next to each other in a side-by-side configuration, and then aligned with the aperture so that a proportion of the quantified light detected at the photodetectors changes as an angle of light from the light source incident to the aperture changes. Optical detectors and methods are provided.
Abstract:
A technique for effectively detecting abnormal values in electromagnetic wave measurement is provided. An electromagnetic wave measuring device includes a measurement data receiving unit 308, an abnormal value detecting unit 309, and a GUI controlling unit 306. The measurement data receiving unit 308 receives measurement data of electromagnetic waves that are measured at multiple positions. The abnormal value detecting unit 309 detects an abnormal value in the measurement data. The GUI controlling unit 306 displays a position at which the abnormal value is measured, on a display.
Abstract:
An additive manufacturing system may include a controller to determine an emissivity of a portion of a layer of build material based on a measured optical property of the portion, or based on object design data representing a degree of intended solidification of the portion. The controller may be to determine a temperature of the portion based on the determined emissivity and a measured radiation distribution emitted by the portion.
Abstract:
The subject of the invention is a method for detecting and classifying events of a scene by means of a single-pupil imaging system equipped with a VisNIR detector in the 0.6 μm-1.1 μm band and with an SWIR detector, which comprises steps of acquiring synchronized VisNIR and SWIR successive 2D images, of displaying the VisNIR images, and of processing these images, which consists in: comparing the SWIR images so as to determine, for each pixel, the variation in illumination from one SWIR image to another and the peak value of these SWIR illuminations, if this variation in SWIR illumination is greater than a threshold, then an event associated with said pixel is detected and: its date, its temporal shape and its duration are determined, in the VisNIR images, the coordinates are determined of the corresponding pixel for which: the variation in the illumination from one VisNIR image to another and the peak value of these VisNIR illuminations are calculated, and these variations in SWIR and VisNIR illumination and their peak values are compared so as to estimate a temperature of the event, the distance of the corresponding point of the scene is estimated so as to calculate the intensity of the event on the basis of the SWIR and VisNIR illuminations and on the basis of this distance, the total energy of the event is estimated on the basis of its temporal shape and of its intensity, the event is classified as a function of its duration, its temperature, its intensity and its energy, the previous steps are repeated for another pixel of the SWIR images.
Abstract translation:本发明的主题是通过配备有0.6μm-1.1μm带中的VisNIR检测器和SWIR检测器的单瞳孔成像系统来检测和分类场景的事件的方法,其包括获取同步的步骤 VisNIR和SWIR连续2D图像,显示VisNIR图像以及处理这些图像,其中包括:比较SWIR图像,以便为每个像素确定从一个SWIR图像到另一个SWIR图像的照明变化以及峰值 如果SWIR照明中的这种变化大于阈值,则检测到与所述像素相关联的事件,并且在VisNIR图像中确定其日期,时间形状及其持续时间,坐标被确定为 对应的像素:计算从一个VisNIR图像到另一个VisNIR图像的照明的变化以及这些VisNIR照明的峰值,并且这些变化在SWIR a 和VisNIR照度和它们的峰值进行比较,以估计事件的温度,估计场景的对应点的距离,以便基于SWIR和VisNIR照明计算事件的强度,并且 在这个距离的基础上,事件的总能量是根据其时间形状和强度来估计的,事件被分类为其持续时间,温度,强度和能量的函数,前面的步骤是 对于SWIR图像的另一个像素重复。
Abstract:
A mobile apparatus is provided for measuring photometric characteristics of airport marker lights. The mobile apparatus includes a measuring rod configured to be moved above the marker lights to be checked, in light beams emitted by these marker lights, and a device for measuring the distance between the measuring rod and the marker lights to be checked. The measuring rod carries at least one photometric sensor and includes a device for acquiring and processing the signals emitted by the photometric sensor or sensors during its movement, as a function of the distance measured between the measuring rod and the marker lights to be checked. The device for acquisition and processing is configured to generate a set of data representing photometric characteristics of each marker light checked.
Abstract:
An electronic device comprising: an ultraviolet (UV) light sensor; and a processor configured to: generate a plurality of initial UV light measurements by using the UV light sensor, wherein each of the plurality of initial UV light measurements is associated with a respective orientation of the electronic device; and select a reference UV light measurement from the plurality.
Abstract:
The invention relates to a wrist-worn device (10) for sensing ambient light intensity, comprising a plurality of light receivers arranged at different positions of the wrist-worn device (10) in different orientations to receive light from different directions (+X, −X; +Y, −Y; −Y; +Z, −Z).
Abstract:
A system for field measurement and calibration of photovoltaic reference devices, including a reference device electronics unit that measures the electrical output of a photovoltaic reference module and provides data to determine the solar irradiance received by the reference module as a function of its electrical output; and a calibrator unit that is used to routinely recalibrate the reference device electronics unit and the reference module, wherein the calibrator unit contains one or more calibrated photovoltaic reference cell(s).