摘要:
A system for providing integrated detection and deterrence against an unmanned vehicle including but not limited to aerial technology unmanned systems using a detection element, a tracking element, an identification element and an interdiction or deterrent element. Elements contain sensors that observe real time quantifiable data regarding the object of interest to create an assessment of risk or threat to a protected area of interest. This assessment may be based e.g., on data mining of internal and external data sources. The deterrent element selects from a variable menu of possible deterrent actions. Though designed for autonomous action, a Human in the Loop may override the automated system solutions.
摘要:
A method for neutralizing a threat, include: detecting an oncoming object prima facie aimed at a protected platform. In response to the detecting, classifying the object as an Anti-Tank-Guided Missile (ATGM) threat. In response to said classification, calculating fire characteristics of the interceptor, such that the ATGM threat will fall an Electro-Magnetic-Pulse induced neutralization geometric envelope relative to the interceptor, for achieving a neutralization effect of the threat, and firing said interceptor that is equipped with at least an Electro-Magnetic-Pulse warhead according to the fire characteristics.
摘要:
According to examples of the presently disclosed subject matter, there is provided a system for estimating a source location of a projectile, comprising an optics an optics subsystem, a radar subsystem and a processor. The processor is adapted to use range and velocity measurements obtained from data provided by the radar subsystem, a source direction and an event start time obtained from data provided by the optical subsystem and a predefined kinematic model for the projectile for estimating a range to a source location of the projectile.
摘要:
Methods of connecting or linking real objects to machines or the virtual world in real time utilizing a device are disclosed. In one embodiment, a wireless tag attached to an object in communication with an electronic device, such as a cellular phone, tablet computer, laptop computer, or watch, monitors and updates the position of a wireless tag locally and on a machine/network/cloud. Methods of using a wireless tag in safety, loss/theft prevention, healthcare, tracking, advertising and marketing, education, games, finance, payment, and athletic are disclosed. In another embodiment, methods of providing an application programming interface and/or a software development kit based on the devices are provided, allowing software developers the ability to create their own programs or applications on top of the disclosed system is disclosed. Methods of allowing developers to distribute and/or monetize applications developed through the application programming interface and/or a software development kit are also disclosed.
摘要:
A tracking apparatus includes a photosensor. The apparatus includes only a single, physically compact, optical pattern emitting base station. The apparatus includes a computer that tracks the photosensor to sub-millimeter accuracy using the optical pattern emitted by the base station. Alternatively, the computer determines angular position of the photosensor relative to the base station to a finer resolution than the size of an aperture of the photosensor from the light emitted by the base station. A method for tracking.
摘要:
A system (100) for providing an integrated multi-sensor detection and countermeasure against commercial unmanned aerial systems/vehicles (44) and includes a detecting element (103, 104, 105), a tracking element (103,104, 105) an identification element (103, 104, 105) and an interdiction element (102). The detecting element detects an unmanned aerial vehicle in flight in the region of, or approaching, a property, place, event or very important person. The tracking element determines the exact location of the unmanned aerial vehicle. The identification/classification element utilizing data from the other elements generates the identification and threat assessment of the UAS. The interdiction element, based on automated algorithms can either direct the unmanned aerial vehicle away from the property, place, event or very important person in a non-destructive manner, or can disable the unmanned aerial vehicle in a destructive manner. The interdiction process may be over ridden by intervention by a System Operator/HiL.
摘要:
A system for providing integrated detection and countermeasures against unmanned aerial vehicles include a detecting element, an location determining element and an interdiction element. The detecting element detects an unmanned aerial vehicle in flight in the region of, or approaching, a property, place, event or very important person. The location determining element determines the exact location of the unmanned aerial vehicle. The interdiction element can either direct the unmanned aerial vehicle away from the property, place, event or very important person in a non-destructive manner, or can cause disable the unmanned aerial vehicle in a destructive manner.
摘要:
A system for detecting and tracking one or more of direction, orientation and position of one or more light sources includes one or more optical fiber sensors configured to receive light from the one or more light sources and to generate a plurality of cones of light according to relative positions of the one or more optical fiber sensors relative to the one or more light sources. The system includes light data processing circuitry configured to detect characteristics of the plurality of cones of light and to determine one or more of direction, orientation, or position of the one or more light sources relative to the one or more optical fibers.
摘要:
Method and apparatus for determining direction from which electromagnetic radiation originates and spectral characteristics of the radiation are provided. Lenses, diffraction gratings, which may be present on the surface of the lenses, and mirrors direct radiation to a photodetector. Lens and grating parameters, along with the location, size, relative spacing and orientation of diffracted orders of radiation detected by the photodetector are used for determining direction from which the radiation originates.
摘要:
An imager may include depth sensing pixels that provide an asymmetrical angular response to incident light. The depth sensing pixels may each include a substrate region formed from a photosensitive portion and a non-photosensitive portion. The depth sensing pixels may include mechanisms that prevent regions of the substrate from receiving incident light. Depth sensing pixel pairs may be formed from depth sensing pixels that have different asymmetrical angular responses. Each of the depth sensing pixel pairs may effectively divide the corresponding imaging lens into separate portions. Depth information for each depth sensing pixel pair may be determined based on the difference between output signals of the depth sensing pixels of that depth sensing pixel pair. The imager may be formed from various combinations of depth sensing pixel pairs and color sensing pixel pairs arranged in a Bayer pattern or other desired patterns.