Abstract:
A method and system are provided for the. Transmission and reception of an In-band On-channel (IBOC) FM-band digital audio broadcast (DAB) signal. The IBOC DAB signal is generated in the transmitter to substantially occupy the upper and lower sideband frequency regions in the RF emission mask for the conventional broadcast analog FM-band. Redundant source bit information is transmitted in both the upper and lower sidebands so that the loss of information in either one but not both sidebands due to large amounts of interference or distortion, caused by, for example, first-adjacent interference, does not deleteriously affect the IBOC DAB receiver performance. The system exhibits both frequency-diversity and time-diversity. The receiver determines which codeword bit estimate, corresponding to either upper or lower sideband signals, is less likely to be erroneous. The receiver system selects between decoded estimates for each pair of demodulated ECC codewords or combines both ECC codeword estimates prior to decoding in certain embodiments.
Abstract:
A method and system are provided for the transmission and reception of an In-band On-channel (IBOC) FM-band digital audio broadcast (DAB) signal. The IBOC DAB signal is generated in the transmitter to substantially occupy the upper and lower sideband frequency regions in the RF emission mask for the conventional broadcast analog FM-band. Redundant source bit information is transmitted in both the upper and lower sidebands so that the loss of information in either one but not both sidebands due to large amounts of interference or distortion, caused by, for example, first-adjacent interference, does not deleteriously affect the IBOC DAB receiver performance. The system exhibits both frequency-diversity and time-diversity. The receiver determines which codeword bit estimate, corresponding to either upper or lower sideband signals, is less likely to be erroneous. The receiver system selects between decoded estimates for each pair of demodulated ECC codewords or combines both ECC codeword estimates prior to decoding in certain embodiments.
Abstract:
A system for combining AM and FM transmissions. In-band, On-channel, FM Digital Audio Broadcast (IBOC FM-DAB) allows simultaneous transmission of DAB and FM over existing FM allocations without interfering with conventional analog FM signals. The utility of existing FM spectrum allocations is therefore enhanced.
Abstract:
A system for peak-to-average-power ratio (PAPR) reduction of a frequency shifted plurality of digital broadcast signals taking into account the combined signal peaks in order to transmit the signals more efficiently in a single broadcast transmission system. The PAPR algorithm takes into account a rotating constellation phase offset for the shifted signals corresponding to the amount of applied frequency shift. In the case of a dual sideband In-Band-On-Channel (IBOC) signal typically used in conjunction with an FM carrier in the center, the sidebands can be interleaved to create a new IBOC signal definition and take the place of the FM carrier for an all-digital transmission that is backward compatible with IBOC receivers allowing for a gradual migration to all digital broadcasting.
Abstract:
A system for peak-to-average-power ratio (PAPR) reduction of a frequency shifted plurality of digital broadcast signals taking into account the combined signal peaks in order to transmit the signals more efficiently in a single broadcast transmission system. The PAPR algorithm takes into account a rotating constellation phase offset for the shifted signals corresponding to the amount of applied frequency shift. In the case of a dual sideband In-Band-On-Channel (IBOC) signal typically used in conjunction with an FM carrier in the center, the sidebands can be interleaved to create a new IBOC signal definition and take the place of the FM carrier for an all-digital transmission that is backward compatible with IBOC receivers allowing for a gradual migration to all digital broadcasting.
Abstract:
A method of processing a digital radio broadcast signal includes: (a) determining a plurality of current correlation sample values representative of a time delay between samples in an analog audio sample stream and samples in a digital audio sample stream; (b) determining a current inversion status; (c) updating a delay history and an inversion status history; (d) checking the current correlation sample values for consistency with a first confidence threshold; (e) if consistency is found in step (d), determining if each of a first plurality of values in the delay history is consistent within a predetermined range of the current correlation sample values; (f) if consistency is found in step (e), determining if a value in the inversion status history is consistent with the current inversion status; and (g) if the consistency is found in step (f), allowing blending of an output to the digital audio sample stream.
Abstract:
Methods and systems lor temporally aligning audio samples of digital and analog portions ol a radio broadcast signal involve receiving a radio broadcast signal having analog and digital portions; separating the analog and digital portions; retrieving a stored first time interval of an approximate time for a sample of the digital portion to travel through a digital signal path in a receiver including a digital demodulator: measuring a second time lor the sample of the digital portion to travel from an input of the digital signal path to an input of the digital demodulator; generating a delay amount by adding the first time to the second time; delaying second audio samples of the digital portion by tho delay amount relative to first audio samples of tho analog portion such that the second audio samples are temporally aligned with the first audio samples; and combining ihe first and second audio samples.
Abstract:
A broadcasting receiver suitable for receiving a broadcasting signal transmitted in an IBOC signal format, comprises: a channel seek directing means for directing to start a channel seeking operation that selects selectable channel in an order of frequency; a channel seek controlling means for starting and controlling the channel seeking operation in accordance with the direction of the channel seek directing means; and a multichannel determining means for determining whether a selected frequency channel is providing multichannel digital broadcasting or not; and wherein the channel seek controlling means selects a next subchannel in an order of identification code before searching for the next frequency channel, if it is determined by the multichannel determining means that the selected frequency channel is providing the multichannel digital broadcasting.
Abstract:
An apparatus includes a network receiver for receiving an over-the-air in-band on-channel broadcast signal and extracting broadcast content from the broadcast signal, and an output for delivering the content by way of a first receiver output signal to a plurality of network player devices. A method performed by the apparatus is also included.
Abstract:
A signal generator includes a memory for storing content information in the form of vectors including in-phase and quadrature elements of an orthogonal frequency division multiplexing waveform, a processor for converting the vectors to a radio frequency signal, and a logic device for controlling the operation of the memory and the processor. The in-phase and quadrature elements represent baseband content of the orthogonal frequency-division multiplexing waveform.