Abstract:
An electronic watermark data insertion apparatus comprises an insertion information memory (39) for preliminarily storing insertion information for designating electronic watermark data to be inserted block by block and an electronic watermark data insertion unit (33) for inserting, on the basis of the insertion information, the designated electronic watermark data from an electronic watermark data table (37) in a quantized image block by block. An electronic watermark data detection apparatus comprises an electronic watermark date extracting unit (45) for extracting the image data having a biased frequency region projecting in dependency on the inserted electronic watermark data block by block and an electronic watermark data detection unit (50) for calculating a statistical similarity between the extracted data and the electronic watermark data stored in an electronic watermark data table (48). An electronic watermark data accumulator (51) accumulates the statistical similarity for a predetermined time interval to produce an accumulated addition result which is reset after the elapse of the predetermined time interval or when the accumulated addition result exceeds the a predetermined threshold value. A determining unit (52) determines that the electronic watermark data is detected when the accumulated addition result exceeds the predetermined threshold value.
Abstract:
A document secure against tampering or alteration and method and apparatus for producing and authenticating such a document. A document is scanned to produce a digital signal which is compressed, encrypted, and coded as a two dimensional barcode or as some other appropriate form of coding, which is incorporated into a label which is the affixed to the document. In one embodiment the signal representing the image is encrypted using a public key encryption system and the key is downloaded from a center. This key maybe changed from time to time to increase security. To facilitate authentication the corresponding decryption key is encrypted with another key and incorporated on the card. To validate the document the coded signal is scanned from the label, decoded, decrypted, expanded and displayed. The card may then be authenticated by comparison of the displayed representation of the image and the document.
Abstract:
A cell phone is disclosed for acquiring information to be transmitted to a receiving facility and for transmitting such thereto. A capture device captures information from an external source. A processor is provided for associating with the captured information a representation of the date and time of the capture of the information, such that the representation of the date and time information in association with the captured information forms augmented captured information. The processor also places the augmented captured information in association with subscriber information in a transmission of the augmented captured information to a receiving facility requiring such subscriber information. A transmitter transmits the transmission including the augmented captured information and the subscriber information to the receiving facility. An encryptor encrypts the augmented captured information with a symmetrical encryption algorithm to provide encrypted augmented captured information in the transmission with the subscriber information.
Abstract:
A printed audio format includes a printed encoding of an audio signal, and a plurality of spaced-apart and parallel rails. The printed encoding of the audio signal is located between the plurality of rails and each rail comprises at least one marker. The printed encoding comprises a first portion and a second portion, each portion comprises a plurality of code frames, and each frame represents a time segment of an audio signal. The first portion encodes a first time period of the audio signal and the second portion encodes a second time period of the audio signal. The second portion is encoded in reverse order with respect to the first portion so that the joining part is on the same end of both portions.
Abstract:
A method for enhancing security printing includes determining fields associated with print job variability. Physical security information is entered, and a physical security data stream is generated from the physical security information. The physical security data stream is mapped to a data stream that is used to provide settings for the fields for the print job variability. The fields for the print job variability are set based upon the mapping the physical security data stream.
Abstract:
An image processing device includes a frequency calculation part configured to calculate frequency coefficients of an image, a coefficient selection part configured to select plural pairs of the frequency coefficients from the calculated frequency coefficients, a code generation part configured to generate a code based on a comparison result between an absolute value of a difference between the two frequency coefficients of each of the selected pairs and a threshold, and a magnitude relationship between the two frequency coefficients, and a signature generation part configured to encrypt the generated code with a private key to generate a digital signature.
Abstract:
A photo reproduction method includes scanning redundantly encoded data from a photograph, the redundantly encoded data being scanned from out of the photographic image; decoding the redundantly encoded data to obtain a digital representation of the photographic image from which the redundantly encoded data was scanned; and printing the digital representation of the photographic image to obtain a copy of the photographic image.
Abstract:
An apparatus for reading data encoded as an array of dots printed on a substrate together with an image. The dots of the array are substantially invisible to an average unaided human eye. The apparatus includes a light source for illuminating the substrate; a detector for receiving the illumination from the light source reflected off the substrate, the detector outputting a first signal representative of the array of dots, the detector extending a distance that is less than a width of the substrate; a decoder interconnected to said detector for receiving and decoding said first signal to obtain the data encoded by the array of dots; and a top substrate covering the detector and the light source. The top substrate has an emission portion and a reception portion. The emission portion is shaped with a semicircular cross section adapted to focus illumination from the light source onto the substrate. The reception portion is shaped to define a series of microlenses adapted to focus illumination reflected off the substrate into the detector.
Abstract:
A reader and printer system is provided that is capable of reading data from a substrate, decoding the data and printing information derived from the data. The data is carried on the substrate as an array of dots. The substrate carries an image and the data is a digital representation of the image and so a digital copy of the image may be made from the data carried on the substrate.
Abstract:
An apparatus for reproducing a visible image depicted in a photograph carrying digitally encoded data printed in invisible ink. The digitally encoded data having pixel values for all pixels in the visible image. The apparatus comprises an illuminating means for illuminating the photograph with invisible radiation; a sensing means for receiving the invisible radiation illuminated on and reflected from the photograph by the illuminating means, the sensing means adapted to detect an interaction of the invisible radiation with the digitally encoded data carried on the photograph; a top substrate in which the illuminating means and the sensing means are encased, the top substrate being transparent to the invisible radiation and having a semi circular cross section in the vicinity of the illuminating means, the top substrate further having a elongated recess for receiving therein the sensing means; means for processing the invisible radiation received by the sensing means, the means for processing operable to decode the digitally encoded data; and an inkjet printer for receiving data from the means for processing data to print a copy of the visible image depicted in the photograph, the data used to print the visible image being generated from the digitally encoded data. The top substrate, in the vicinity of the sensing means, is shaped to define an array of microlenses for focusing the invisible radiation reflected from the photograph onto the sensing means.