摘要:
A flow battery includes a cell, a bipolar plate which is in contact with one of a positive electrode and a negative electrode constituting the cell, a current collector plate which has a terminal portion that is led out to the outside of the cell and is electrically connected to the bipolar plate, and a supply/discharge plate which is stacked on the current collector plate and supplies and discharges electrolytes to and from the cell. When the side of the supply/discharge plate facing the current collector plate is regarded as a front surface and the side opposite thereto is regarded as a back surface, the supply/discharge plate has an insertion hole which passes between the front surface and the back surface thereof and into which the terminal portion is inserted, and the terminal portion passes through the insertion hole and extends from the front surface side to the back surface side of the supply/discharge plate to be led out.
摘要:
The invention concerns redox flow batteries comprising one or more electrochemical cells in fluid contact with an electrochemical balancing cell, the balancing cell comprising: (i) a first electrode comprising a gas diffusion electrode and the first electrode comprising a hydrogen oxidation catalyst, wherein the first electrode being maintained at a potential more positive than the thermodynamic potential for hydrogen evolution; (ii) a second electrode, the second electrode contacting negative electrolyte, and the second electrode being maintained at a potential sufficiently negative to reduce the negative electrolyte; (iii) a membrane dis posed between the positive electrode and the negative electrode, the membrane suitable to allow hydrogen cations to flow from the membrane to the negative electrolyte; and (iv) a means for contacting hydrogen with the first electrode.
摘要:
A method and apparatus for controlling operation of a redox flow battery. The method of controlling operation of a redox flow battery includes obtaining a diffusivity of anolyte ions with respect to a separator, obtaining a diffusivity of catholyte ions with respect to the separator, determining electrolyte diffusivities depending upon a state of charge value of the redox flow battery based on the diffusivity of the anolyte ions and the diffusivity of the catholyte ions, determining a minimum state of charge value and a maximum state of charge value of the redox flow battery based on the electrolyte diffusivities, and setting operating conditions of the redox flow battery based on the minimum state of charge value and the maximum state of charge value. The method and apparatus for controlling operation of a redox flow battery can prevent reduction in capacity of the redox flow battery.
摘要:
There are provided: a solid polymer power generation or electrolysis method that does not require injection of energy from the outside and maintenance of a high temperature, and is capable of converting carbon dioxide to a useful hydrocarbon while producing energy, controlling the production amounts of the hydrocarbons or the like and a ratio sorted by kind of the hydrocarbons, improving utilization efficiency of a product, and simplifying equipment for separation and recovery; and a system for implementing the solid polymer power generation or electrolysis method. Carbon dioxide is supplied to the side of one electrode 111 of a reactor 110 having a membrane electrode assembly 113, hydrogen is supplied to the side of the other electrode 112, and the amounts of the hydrocarbons produced per unit time and the ratio sorted by kind of the hydrocarbons are changed by controlling a power generation voltage of the reactor 110.
摘要:
Disclosed herein is an electrode material comprising a carbon-containing substrate, comprising a surface and a plurality of RF moieties wherein each RF moiety is covalently bound to the surface; and each RF moiety comprises a fluorine atom. Also, disclosed herein is a method of preparing an electrode material.
摘要:
According to the method for preparing an electrolyte for a vanadium redox flow battery, one electrolyte can be used as both the positive electrolyte and the negative electrolyte, by preparing an electrolyte having a median oxidation number of electrolytes used for the positive electrode and the negative electrode of the vanadium redox flow battery. Particularly, since the mixed electrolyte having the median oxidation number is separated into the same amounts of positive electrolyte and the negative electrolyte at the time of charging and discharging, the maximum charging and discharging effect based on the supplied capacitance can be obtained.
摘要:
A redox flow battery that uses metal complexes with amino-alcohol ligands as the electroactive species in alkaline electrolytes to store electrical energy. The battery includes a first and a second electrolyte storage unit that each includes a metal complex selected from transition metals with an amino-alcohol ligand as an electroactive species in an alkaline electrolyte. Such solutions in these electrolyte storage units are each prepared by mixing stoichiometric amounts of a metal ion and an amino-alcohol ligand in water to form a metal-ligand mixture followed by adding an amount corresponding to 3-5 moles/liter of an alkaline electrolyte solution to each metal-ligand mixture to form a metal complex with the amino-alcohol ligand in the alkaline electrolyte to be used by a storage unit. As a result, the operational and maintenance costs of the redox flow battery are reduced while reducing the complexity of the manufacturing process.
摘要:
A liquid catholyte as well as electrochemical cells and automotive vehicles employing the liquid catholyte are disclosed. The liquid catholyte includes a quinone as redox active material and a fluoroalkylsulfonyl salt as charge balancing agent and is characterized by a liquid form of the redox active material regardless of redox state. The liquid catholyte can thus have utility as a catholyte in a flow battery.
摘要:
A fuel cell system is provided having a plurality of fuel cells combined to form a fuel cell stack. The fuel cell system is characterized in that at least one fuel cell is a redox flow fuel cell having an electrode assembly, which electrode assembly has a proton-permeable separator, which separator is arranged between an anode region and a cathode region. The redox flow fuel cell has a regenerator spatially separated from the electrode assembly, and a water-forming reaction of the redox flow fuel cell occurs in the regenerator. The redox flow fuel cell also has at least one oxidation-fluid delivery unit for feeding oxidation fluid into the regenerator in order to perform the water-forming reaction in the regenerator of the redox flow fuel cell. The redox flow fuel cell also has a pumping circuit, comprising a pumping device and a pumping line, for transporting an electrochemical storage system through the cathode region or the anode region of the redox flow fuel cell and through the regenerator. The electrochemical storage system contains active redox molecules and is designed to receive and release electrons. The fuel cell system also has a control device, which is designed to adjust an available electrical and/or thermal power of the fuel cell system by changing a redox state of the electrochemical storage system.
摘要:
A flow-field plate for a flow stack in a flow cell battery system is described. The flow-field plate includes first electrolyte channels formed in a molded plate to direct a first electrolyte to a first flow-field on a first side of the molded plate and second electrolyte channels formed in the molded plate to direct a second electrolyte to a second flow-field on the second side of the molded plate.