Abstract:
A castable, moldable, or extrudable magnesium-based alloy that includes one or more insoluble additives. The insoluble additives can be used to enhance the mechanical properties of the structure, such as ductility and/or tensile strength. The final structure can be enhanced by heat treatment, as well as deformation processing such as extrusion, forging, or rolling, to further improve the strength of the final structure as compared to the non-enhanced structure. The magnesium-based composite has improved thermal and mechanical properties by the modification of grain boundary properties through the addition of insoluble nanoparticles to the magnesium alloys. The magnesium-based composite can have a thermal conductivity that is greater than 180 W/m-K, and/or ductility exceeding 15-20% elongation to failure.
Abstract:
Undercooled liquid metallic core-shell particles, whose core is stable against solidification at ambient conditions, i.e. under near ambient temperature and pressure conditions, are used to join or repair metallic non-particulate components. The undercooled-shell particles in the form of nano-size or micro-size particles comprise an undercooled stable liquid metallic core encapsulated inside an outer shell, which can comprise an oxide or other stabilizer shell typically formed in-situ on the undercooled liquid metallic core. The shell is ruptured to release the liquid phase core material to join or repair a component(s).
Abstract:
A method for a die casting with a casting device which includes a casting valve with a valve piston and a post-compression piston configured to provide a post-compression. The method includes providing a casting valve in a closed position and a mold cavity which is cleaned and prepared for a mold filling process, opening the casting valve for a casting, filling the casting valve with a melt, closing the casting valve after the filling with the melt, cooling the casting valve and the melt, and removing a cast part. A post-compression is provided to the melt during the cooling by the post-compression piston.
Abstract:
An aluminum alloy includes, in weight percent, 0.1-0.25 Si, 0.10 max Fe, 2.0-3.4 Cu, 0.9-1.2 Ni, 1.3-1.8 Mg, 0.25 max Ti, and one or more dispersoid forming elements, the balance being aluminum and unavoidable impurities. The alloy is suitable for casting, and may be formed into a cast alloy product. Additionally, the alloy exhibits excellent high temperature mechanical properties, particularly high temperature fatigue strength, as well as good corrosion resistance.
Abstract:
A casting valve configured to supply a melt of a casting device includes a valve housing including a melt channel connection as an inlet and a valve outlet as a run-out. A melt channel is configured to be pressurizable via a casting pressure. A valve compartment is configured to receive the melt. The valve compartment is connectable via the melt channel connection with the melt channel. A closing device is configured to modify a cross-sectional surface of the valve outlet. A post-compression piston is configured to post-compress the melt after a completion of a mold filling.
Abstract:
An apparatus for press casting includes a casting mold formed of a fixed mold and a first moving mold operable to move relative to the fixed mold. The apparatus further includes a second moving mold operable to move relative to the first moving mold. A mold cavity, which forms a cast product, is configured by the fixed mold and the second moving mold. When the first moving mold is moved to a first predetermined position, a molten metal passage and a gas exhaust port, which communicate with the mold cavity, are formed at positions outside the mold cavity. A communication between the mold cavity and the molten metal passage, and the gas exhaust port is cut off by the second moving mold when the second moving mold is moved to a second predetermined position while the first moving mold is maintained at the first predetermined position thereof.
Abstract:
A shot tube plunger for a die casting system includes a first face, an opposing second face and an outer surface disposed between said first face and said opposing second face. A channel circumferentially extends about the outer surface. The channel is operable to receive a portion of a charge of material introduced into the die casting system.
Abstract:
A die casting system includes a die, a shot tube and a shot tube plunger. The die casting system is positioned relative to a surface. The die includes a plurality of die components that define a die cavity. The shot tube is in fluid communication with the die cavity. The shot tube plunger is moveable within the shot tube to communicate molten metal into the die cavity. Each of the die, the shot tube and the shot tube plunger are inclined at an angle relative to the surface during injection of the molten metal into the die cavity.
Abstract:
A method of forming a liquid-forged article. The method comprises introducing a melt into a die cavity; moving a punch relative to the die cavity such that the melt enters at least one high aspect ratio cavity in the punch and air is released via at least one air vent insert in the punch; and exerting a forming pressure on the melt while the melt solidifies in the high aspect ratio cavity.
Abstract:
A molding machine able to stably detect an abnormality of a squeeze pin, for example, a die cast machine having a squeeze pin able to apply pressure to a melt of a cavity repeatedly performing a molding cycle including a pressing process making the squeeze pin advance and applying pressure to the melt of the cavity in a state where the melt is filled in the cavity and a spray process making the squeeze pin advance and performing at least one of lubrication and cooling of the squeeze pin in the state where the melt is not filled in the cavity, and, in the spray process, detecting a stroke of the squeeze pin and detecting an abnormality of the squeeze pin based on a comparison of the detection result about the stroke and a predetermined reference value.