Abstract:
Electric motor control is based on a target energization amount calculated using a braking operation member operation amount. A state quantity is acquired as an actual value, indicating an actual actuation state of a movable member located in a power transmission path from the electric motor to a friction member. Using the operation amount, it is determined whether or not inertia compensation control is necessary, which compensates for the inertia influence of a brake actuator during electric motor deceleration. “A target value corresponding to the actual value” is determined as a reference value, which is calculated based on the operation amount at a time when inertia compensation control is necessary. Based on the actual and reference values, “an inertia compensation energization amount for decreasing the target energization amount to compensate for the influence of inertia” is calculated, and the target energization amount is adjusted using the inertia compensation energization amount.
Abstract:
Disclosed are steering control apparatus and a steering control method which are capable of determining a turning state of a vehicle, and controlling a steering control signal so that the vehicle maintains a normal turning state, thereby improving safety of the vehicle.
Abstract:
A hybrid drive system for use in a drive train assembly of a vehicle includes a control apparatus that operates the hybrid drive system in either a normal energy recovery mode in response to a braking request or an extended braking mode in response to an extended braking request. In the normal energy recovery mode, fluid is pumped to an accumulator, which consumes kinetic energy of the vehicle and causes deceleration of the vehicle. In the extended braking mode, fluid is pumped through a pressure relief valve containing a restriction, which consumes the kinetic energy of the vehicle and causes deceleration of the vehicle. If the temperature of the fluid being pumped through the pressure relief valve exceeds a predetermined value, fluid is alternatively pumped through a pump/motor operating in a motoring mode, which consumes the kinetic energy of the vehicle and causes deceleration the vehicle.
Abstract:
The display device (1) comprises means (3) for correcting an acceleration value used for displaying on a screen (7) a speed trend of the airplane, making it possible to zero a speed trend symbol (11) when the Mach number of the airplane does not vary.
Abstract:
A method for detecting zonal operator presence includes receiving a sensor output from a sensor. The sensor may be located on an agricultural machine and the sensor output indicates an operating state of the agricultural machine. Once the sensor output has been received, the operating state of the agricultural machine is determined based on the sensor output. The operating state includes an operator being located within a work area of the agricultural machine. The work area is divided into a plurality of zones. An operating parameter is adjusted based on the operating state.
Abstract:
A method and a system controls braking of a vehicle. The method includes: detecting a pedal stroke, booster negative pressure, and master cylinder hydraulic pressure; setting target master cylinder hydraulic pressure on the basis of the detected pedal stroke and the detected booster negative pressure in a case in which a magnitude of the detected booster negative pressure is smaller than a magnitude of predetermined reference booster negative pressure; and compensating for the master cylinder hydraulic pressure in a case in which the detected master cylinder hydraulic pressure is smaller than the predetermined target master cylinder hydraulic pressure.
Abstract:
A method, an electronic control unit, a vehicle control system and a working machine for controlling an power source adapted to drive at least one ground engaging element of the working machine are provided. The method includes receiving an operator control input indicative of the control of the power source, receiving a state input indicative of an operating state of the machine, determining an operation signal in the response to the operator control input and the operating state input, and sending the determined operation signal for controlling the power source accordingly. An accelerator signal converter adapted to perform any of the method steps is provided, as is an Electronic Control Unit (ECU) including the accelerator signal converter, a vehicle control system including the ECU, and a working machine including the vehicle control system.
Abstract:
An automated system for transporting items between variable endpoints includes a guidance system for identifying the endpoints and at least one autonomous mobile robot interacting with the guidance system for automatically moving items between the endpoints. The at least one robot is configured to (a) collect an item to be transported at a source end point, (b) travel to a destination endpoint utilizing the guidance system to locate the destination endpoint, (c) deliver the item to the destination endpoint, and (d) repeat (a) through (c) for a given set of items. The guidance system is dynamically reconfigurable to identify new endpoints.
Abstract:
An active control method for controlling a pedal effort for an accelerator, may include determining, in a vehicle velocity determining step, whether a vehicle velocity is in 0 (zero) state while the vehicle provided with an accelerator an pedal effort of which is controllable starts-on; determining, in a shifting stage determining step, whether the current shifting stage is on a neutral state or a parking state when it is determined that the vehicle velocity has been in 0 (zero) state in the vehicle velocity determining step; and controlling, in a pedal effort increasing control step, a current pedal effort to increase to a set target pedal effort when it is determined that the current shifting stage has been on the neutral stage or the parking stage in the shifting stage determining step.
Abstract:
The present disclosure shows a crane controller for a crane which includes a hoisting gear for lifting a load hanging on a cable, wherein the crane controller has a cable force mode in which the crane controller actuates the hoisting gear such that a setpoint of the cable force is obtained.