Abstract:
A system comprising method and apparatus for separating biologically-digestible materials from an influent sewage stream. The system may comprise a primary clarification tank to capture sixty percent or more of the total solids from an influent stream; a sludge classifying press (SCP) to isolate and concentrate biologically digestible materials from sludge formed in the primary clarification tank, releasing valuable organics, such as are found in corn kernels, by fracturing the protective casings; a grit capture mechanism in a chamber within the primary clarification tank and isolated from the bulk of the sludge containing biologically-degradable materials; a grit trap to remove grit from the sludge prior to classifying the sludge with the SCP; apparatus for adding thickener to the sludge after classification and prior to digestion; and automation of one or more elements of the process for separating and digesting the biologically digestible materials in an influent stream.
Abstract:
A system comprising method and apparatus for separating biologically-digestible materials from an influent sewage stream. The system may comprise a primary clarification tank to capture sixty percent or more of the total solids from an influent stream; a sludge classifying press (SCP) to isolate and concentrate biologically digestible materials from sludge formed in the primary clarification tank, releasing valuable organics, such as are found in corn kernels, by fracturing the protective casings; a grit capture mechanism in a chamber within the primary clarification tank and isolated from the bulk of the sludge containing biologically-degradable materials; a grit trap to remove grit from the sludge prior to classifying the sludge with the SCP; apparatus for adding thickener to the sludge after classification and prior to digestion; and automation of one or more elements of the process for separating and digesting the biologically digestible materials in an influent stream.
Abstract:
Described herein are processes for increasing biogas yield and reducing volatile solids in biosolids sludge. The biosolids sludge is passed through a controlled flow, hydrodynamic cavitation apparatus and further subjected to anaerobic digestion. The biosolids sludge can be treated with hydrodynamic cavitation prior to or after the sludge is exposed to a thermal hydrolysis step to hydrolyze the sludge.
Abstract:
An organic waste processing system and method for producing a slurry for the production of bio-gas, transportation fuels and chemical products, and a residual solid. The system includes (i) a hopper configured to receive sorted organic waste having contaminants from one or more sources, (ii) a separator system in communication with the hopper and configured to receive the sorted organic waste from the hopper and to remove at least a portion of the contaminants in the sorted organic waste, (iii) a complimentary liquid tank in communication with the separator system and containing complimentary liquids, (iv) a wash water liquid tank in communication with the separator system and containing wash water, (v) a product tank in communication with the separator system and configured to receive the sorted organic waste from the separator system, (vi) a make-up product tank in communication with the separator system and configured to receive the sorted organic waste from the separator system having low COD, (vii) a anaerobic digester system configured to receive the sorted organic waste from the product tank, and (viii) a programmable logic controller.
Abstract:
The present invention describes a method of optimizing CO2 concentration to increase the specific growth rate of Anammox bacteria and methanogens in wastewater and sludge treatment, as well as novel systems and methods of treating wastewater and sludge. The specific growth rate or doubling time of the Anammox bacteria and methanogens were determined to be sensitive to dissolved CO2 concentration. Optimizing dissolved CO2 concentration increases the specific growth rate of the Anammox bacteria, which may be used as an alternative biological nitrogen removal process for the treatment of domestic wastewater. In the method and system of treating sludge, the CO2 stripper returns biogas with low CO2 concentration to the headspace of an anaerobic digester in order to lower the headspace CO2 concentration and therefore, the soluble CO2 concentration. The lower soluble CO2 concentration increases the specific growth rate of the methanogens for a more efficient anaerobic digestion process.
Abstract:
A renewable energy microgeneration system is disclosed. The system comprises one or more portable containers that include a plurality of small holding tanks that are configured to perform at least one of pasteurization and thermophilic anaerobic digestion on waste, a large holding tank that is configured to perform mesophilic anaerobic digestion on the waste after at least one of pasteurization and thermophilic anaerobic digestion is performed, and a de-watering unit that is configured to dry what remains of the waste after mesophilic anaerobic digestion is performed. The system further comprises a controller for automatically moving the waste between the plurality of small holding tanks, the large holding tank, and the de-watering unit as required to facilitate mesophilic anaerobic digestion in the large holding tank. Further, the portable containers are configured to be transported to a site and placed in fluid communication with each other at the site.
Abstract:
A reactor for biological purification of waste water includes a reactor vessel having a substantially flat or a round bottom, at least one supply pipe arranged in a lower region of the reactor vessel for feeding the waste water to be purified into the reactor, at least one fluid discharge pipe for discharging purified waste water from the reactor, at least one solid matter discharge pipe arranged in the lower region of the reactor vessel for discharging solid matter from the reactor and at least one diverting means including at least one diagonally extending section. The at least one diverting means is designed and/or arranged so that solids sinking to the bottom of the reactor from the upper region of the reactor are deflected so that the solids settle in a region of the at least one solid matter discharge pipe and are discharged from the reactor through the at least one solid matter discharge pipe.
Abstract:
A renewable energy microgeneration system is disclosed. The system includes a portable processing container with a mixing tank for mixing waste with a liquid, a macerating pump in fluid communication with the mixing tank that is configured to macerate the waste into smaller pieces, a plurality of small holding tanks in fluid communication with the mixing tank that are configured to perform at least one of a pasteurization thermophilic anaerobic digestion on the waste, a large holding tank in fluid communication with the plurality of small holding tanks that is configured to perform mesophilic anaerobic digestion on the waste after at least one of a pasteurization thermophilic anaerobic digestion is performed on the waste, and a de-watering unit in fluid communication with the large holding tank that is configured to dry what remains of the waste after mesophilic anaerobic digestion is performed on the waste; a controller for automating the flow of the waste between the mixing tank, the plurality of small holding tanks, the large holding tank, and the de-watering unit such that a user does not need to complete any tasks for performing mesophilic anaerobic digestion after the waste is loaded into the mixing tank; and a portable gas storage container comprising a gas storage tank that is configured to store biogas generated by the mesophilic anaerobic digestion, wherein the portable processing container and the portable gas storage container are configured to be transported to a site and placed in fluid communication with each other so the gas storage tank can store biogas generated by mesophilic anaerobic digestion in the processing container at the site.
Abstract:
Disclosed herein are methods for improving performance of an anaerobic digester system. The methods typically include adding a culture comprising hydrogenotrophic methanogens to the system, otherwise referred to as bioaugmentation.
Abstract:
Apparatus, methods and systems for processing waste are provided. For example, a system for processing waste, wherein the waste comprises hard particulates embedded therein, can be provided. The system can comprise a waste disrupter, wherein the waste disrupter disrupts the waste and releases at least one of the embedded hard particulates from the disrupted waste; a segregator, wherein the segregator segregates at least one of the released hard particulates from the waste; and a dilution unit, wherein the dilution unit dilutes the waste. In some embodiments, the system can include a waste loader that provides waste continuously to the waste disrupter, which is configured to disrupt at least a portion of the continuously provided waste.