Abstract:
An ultrasonic probe includes: an ultrasonic transducer; an amplification stage; a bias circuit, which determines a bias voltage on an input terminal of the amplification stage; and a selector having an intermediate node, a high-voltage switch between the intermediate node and the transducer, and a first low-voltage switch between the intermediate node and the input terminal. A control unit controls the high-voltage switch and the first low-voltage switch so as to alternately couple and decouple the amplification stage and the transducer. A precharge circuit determines a precharge voltage on the intermediate node as a function of the bias voltage, before the amplification stage and the transducer are coupled.
Abstract:
A biosensor includes a flexible foil with an electrode layer positioned on the foil. An adhesive layer is positioned on the foil layer, and a first photo-definable hydrogel membrane is positioned over the electrode layer and the adhesive layer. A second photo-definable hydrogel membrane with an immobilized bio-recognition element is positioned over the first hydrogel membrane in contact with the electrode layer through an opening in the first hydrogel membrane.
Abstract:
A common-mode feedback circuit includes a transconductor input stage with differential input terminals, and a frequency-compensated gain stage coupled to the transconductor input stage with differential output terminals. The common-mode feedback circuit also includes a feedback loop having a comparator configured to produce a feedback error signal for the transconductor input stage by comparing with a reference a common-mode sensing signal indicative of a common-mode voltage level sensed at the differential output terminals. In addition, the common-mode feedback loop includes a converter for converting the common-mode voltage level sensed at said differential output terminals into a current signal coupled to the comparator.
Abstract:
An oscillator circuit includes first and second oscillators arranged in a series configuration between a supply voltage node and a reference voltage node. The first and second oscillators are configured to receive a synchronizing signal for controlling synchronization in frequency and phase. An electromagnetic network provided to couple the first and the second oscillators includes a transformer with a primary circuit and a secondary circuit. The primary circuit includes a first portion coupled to the first oscillator and second portion coupled to the second oscillator. The first and second portions are connected by a circuit element for reuse of current between the first and second oscillators. The oscillator circuit is fabricated as an integrated circuit device wherein the electromagnetic network is formed in metallization layers of the device. The secondary circuit generates an output power combining power provided from the first and second portions of the primary circuit.
Abstract:
Described herein is a biasing circuit for a magnetic-field sensor; the magnetic-field sensor is provided with a first detection structure, which generates a first electrical detection quantity as a function of a first component of an external magnetic field, and a second detection structure, which generates a second electrical detection quantity as a function of a second component of an external magnetic field. The biasing circuit electrically supplies the first detection structure and the second detection structure in respective biasing time intervals, at least partially distinct from one another, which preferably do not temporally overlap one other.
Abstract:
A switching amplifier includes a first half-bridge PWM modulator, a second half-bridge PWM modulator, and at least one amplifier stage configured to receive input signals. The switching amplifier also includes a PWM control stage configured to control switching of the first PWM modulator and of the second PWM modulator as a function of the input signals, by respective first PWM control signals and second PWM control signals. The amplifier stage and the PWM control stage have a fully differential structure.
Abstract:
A power-supply circuit includes a transformer with primary and secondary windings, and an energy accumulator on the secondary winding. A circuit monitors the secondary winding and generates a feedback signal that is transferred by a transmission circuit through the secondary winding by selectively transferring energy from the energy accumulator. The transmission circuit includes: a) an electronic switch having a control terminal; and b) a driver circuit for driving the electronic switch. The driver circuit includes a charge-accumulation capacitor connected to the control terminal, and a charge circuit configured to draw energy from the secondary winding and charge the charge-accumulation capacitor.
Abstract:
A positioning apparatus of a vehicle includes a measuring module and a triaxial orientation sensor to provide measured axial accelerations in a Cartesian reference system during a certain time interval. The apparatus also includes a triaxial movement sensor to supply at least one angular variation signal proportional to the axial angular speed of the vehicle during the time interval. A processing unit receives a distance signal proportional to the distance traveled by the vehicle in the time interval, receives the at least one angular variation signal, and supplies at least one reference acceleration of the vehicle. An estimator-calibrator block recursively estimates at least one calibrated acceleration as a function of the measured axial accelerations and of the at least one reference acceleration. The estimator-calibrator block includes a calculation unit to calculate an altitude variation as function of the distance signal and recursively calculates an estimated pitch angle as a function of at least one calibrated acceleration.
Abstract:
An electronic device for implementing digital functions comprising a first and a second electrode regions, separated by an interposing region comprising a dielectric region, is described. The first and the second electrode regions comprise at least one first electrode and at least one second electrode, respectively, configured to generate in the interposing region an electric field depending on an electric potential difference applied thereto. In the interposing region, a molecular layer is comprised, which is composed of a plurality of molecules, each being capable of assuming one or more states, in a controllable manner, depending on a sensed electric field. The dielectric region has a spatially variable dielectric profile, to determine a respective spatially variable field profile of the sensed electric field at the molecular layer.
Abstract:
An embodiment is a computer-implemented method for detecting a straight line in a digital image comprising a plurality of pixels comprising the steps: detecting an edge in the digital image, generating a first straight line which passes through a first pixel of the detected edge, generating a second straight line which passes through a second pixel of the detected edge, which is different from the first pixel, determining at least two intersections with a boundary of the digital image for each generated straight line, determining a set of two parameter values for each generated straight line based on the respective determined at least two intersections, wherein the set of two parameter values uniquely determines the respective generated straight line, and detecting the straight line in the digital image based on the determined sets of two parameter values.