Abstract:
The present disclosure relates to a Turing machine having a reactor comprising a reactant solution comprising a reactant; a first chemical species source to provide a selected amount of a first chemical species; a second chemical species source to provide a selected amount of a second chemical species; one or more controllers coupled to control the addition of the first and second chemical species from the first and second chemical species sources responsive to an input; and a sensor positioned to sense changes in the reactant as the controller controls the first and second chemical species sources to add selected amounts of the respective first and second chemical species to the reactor. The controller receives signals corresponding to the state of the reactant and correlates the states of the reactant to a result that is computed as a function of the input.
Abstract:
There are disclosed molecular scale devices for performing logic functions. Devices comprise at least one input molecular unit, at least one output molecular unit, at least one molecular unit for performing logic or memory functions, and a means for effecting charge transport. Devices of the invention are useful for a variety of electronic and optoelectronic applications.
Abstract:
One embodiment of the present invention is an array of nanoscale latches interconnected by a nanowire bus to form a latch array. Each nanoscale latch in the nanoscale-latch array serves as a nanoscale register, and is driven by a nanoscale control line. Primitive operations for the latch array can be defined as sequences of one or more inputs to one or more of the nanowire data bus and nanoscale control lines. In various latch-array embodiments of the present invention, information can be transferred from one nanoscale latch to another nanoscale latch in a controlled fashion, and sequences of information-transfer operations can be devised to implement arbitrary Boolean logic operations and operators, including NOT, AND, OR, XOR, NOR, NAND, and other such Boolean logic operators and operations, as well as input and output functions. Nanoscale-latch arrays can be combined and interconnected in an almost limitless number of different ways to construct arbitrarily complex, sequential, parallel, or both parallel and sequential computing engines that represent additional embodiments of the present invention.
Abstract:
This invention provides methods for discovering a connectivity relationship among external connections to a two dimensional logic cell, such as a nanocell. The connectivity relationships may then be used to derive a logical relationship among the external connections. Knowledge of the logical relationship among the external connections is, in turn, used to program the logic cell. In one embodiment, voltage pulses of alternating polarity and progressively shorter duration are used to program a chain of interconnected devices within a logic cell. Characterization of connectivity, programming, re-programming and dynamic testing of logic cells, including nanocells, and cell assemblies are taught in the inventive method.
Abstract:
Patterned surfaces for the selective adhesion and outgrowth of cells are useful in cell culture devices, prosthetic implants, and cell-based microsensors. Such surfaces may be prepared by a deep ultraviolet photolithographic technique.
Abstract:
Methods and compositions for electroless metallization. In one aspect, the invention is characterized by the use of chemical groups capable of ligating with an electroless metallization catalyst, including use of ligating groups that are chemically bound to the substrate. In a preferred aspect, the invention provides a means for selective metallization without the use of a conventional photoresist patterning sequence, enabling fabrication of high resolution metal patterns in a direct and convenient manner.
Abstract:
Provided herein are compositions, devices, systems and methods for generation and use of biomolecule-based information for storage. Further provided are devices-having addressable electrodes controlling polynucleotide synthesis (deprotection, extension, or cleavage, etc.) The compositions, devices, systems and methods described herein provide improved storage, density, and retrieval of biomolecule-based information.
Abstract:
A method of machining a cellular core (14) includes mounting the core (14) atop a table (12) in a multi-axis Computerized Numerical Controlled (CNC) machine (10). The machine (10) is operated to self-scan the core (14) and self-recognize individual cells (30) arranged laterally in columns and longitudinally in rows. A machining path (E) is self-generated from the pre-recognized cells (30), and the core (14) is then machined along the self-generated machining path (E).
Abstract:
A functional device and functional system are provided. A functional device is formed by coupling a first structure formed by local interaction and a second structure formed according to a predetermined global rule via a third structure having an anisotropic configuration.
Abstract:
A functional device, a manufacturing method thereof, functional system and functional material are provided. A functional device is formed by coupling a first structure formed by local interaction and a second structure formed according to a predetermined global rule via a third structure having an anisotropic configuration. The third structure may be made by stacking two superlattice thin pieces, each split from a one-dimensional superlattice in form of a periodical lamination of conductive layers and dielectric layers, by rotating one from the other by 90 degrees.