Abstract:
A laser collimating module includes a heat dissipating base having a fixing element on a top thereof and a plurality of pins at a bottom thereof, a laser diode chip disposed on the fixing element, a cap covering on the heat dissipating base with a placing space therein and an opening on a top thereof, and a cylindrical lens disposed in the placing space. The opening of the cap is connecting to the placing space and aligning with the laser diode chip correspondingly. The cylindrical lens has a first surface facing toward the laser diode chip with a first minimized distance arranged therebetween and a second surface facing toward the opening with a second minimized distance arranged therebetween. The laser diode chip is stimulated and emits an elliptical laser beam, and a light emitting angle is formed. As the elliptical laser beam passes through the cylindrical lens, the light emitting angle is narrowed and the laser beam is collimated to be a linear beam.
Abstract:
An optical device is disclosed. The optical device includes a first packaging unit and a second packaging unit. The first packaging unit includes a first lead frame and a sensor electrically coupled to the first lead frame. The second packaging unit includes an emitting die and a second lead frame. The emitting die has an optical axis and is operable to emit a light. The second lead frame has a first portion disposed within the second packaging unit and a second portion extending into the first packaging unit so that an angle of about 5-85 degrees is formed between the optical axis of the emitting die and the sensing plane of the sensor.
Abstract:
A dual-wavelength gun aiming collimated beam light source module, comprising: a positioning seat, having a first through hole and a second through hole inside; a first laser module for emitting laser light of first wavelength; a second laser module for emitting laser light of second wavelength; a first reflecting mirror, and the inner surface of the first reflecting mirror has a first wavelength laser light high-reflection coating; and a second reflecting mirror, and the outer surface of the second reflecting mirror has a first wavelength laser light high-reflection coating and a second wavelength laser light high-reflection coating; so as to solve the aiming deviation problem.
Abstract:
A second-harmonic generation nonlinear frequency converter includes a nonlinear optical crystal. The nonlinear optical crystal includes a plurality of sections. The sections connect to each other in sequence, and each section has a phase different from others. Each of the phases includes a positive domain and a negative domain. Each of the sections includes a plurality of quasi-phase-matching structures. The quasi-phase-matching structures connect to each other in sequence and have the same phase in one section.
Abstract:
A packaging method for forming a conduction cooled package (CCP) laser is provided and includes soldering a semiconductor laser device on the first heat spreader; and then bonding the first heat spreader on the second spreader via an Al/Ni nano-laminated foil. Moreover, a CCP laser is also provided herein.
Abstract:
In the specification and drawing, an optical detection apparatus is described and shown with scanning devices, detectors, and a processing unit, wherein the scanning devices are positioned to scan a detection region with different light wavelengths.
Abstract:
A dual-wavelength gun aiming collimated beam light source module, comprising: a positioning seat, having a first through hole and a second through hole inside; a first laser module for emitting laser light of first wavelength; a second laser module for emitting laser light of second wavelength; a first reflecting mirror, and the inner surface of the first reflecting mirror has a first wavelength laser light high-reflection coating; and a second reflecting mirror, and the outer surface of the second reflecting mirror has a first wavelength laser light high-reflection coating and a second wavelength laser light high-reflection coating; so as to solve the aiming deviation problem.
Abstract:
A laser module package with dual colors and multi-dies mainly includes a first PCB arranged in long shape and electrically connected to a plurality of first dies, a second PCB arranged in long shape and electrically connected to a plurality of second dies, a plurality of first collimators correspondingly disposed in a plurality of first openings, and a plurality of second collimators correspondingly disposed in a plurality of second openings. A plurality of first reflectors correspondingly reflects laser beams emitted from the first dies to the first collimators and a plurality of second reflectors correspondingly reflects laser beams emitted from the second dies to the second collimators; or having a plurality of first metal pieces fixing corresponding first dies for the laser beams emitted therefrom to go through the corresponding first collimators and a plurality of second metal pieces fixing corresponding second dies for the laser beams emitted therefrom to go through the corresponding second collimators.
Abstract:
A second-harmonic generation nonlinear frequency converter includes a nonlinear optical crystal. The nonlinear optical crystal includes a plurality of sections. The sections connect to each other in sequence, and each section has a phase different from others. Each of the phases includes a positive domain and a negative domain. Each of the sections includes a plurality of quasi-phase-matching structures. The quasi-phase-matching structures connect to each other in sequence and have the same phase in one section.
Abstract:
A rotating optical range finder includes a stationary base, a rotating base, an optical sensor, a transmitting circuit, a receiving circuit, a first induction coil, and a second induction coil. The rotating base is disposed on the stationary base. The optical sensor is disposed in the rotating base. The transmitting circuit is disposed in the stationary base. The receiving circuit is disposed in the rotating base and electrically connected to the optical sensor. The first induction coil is disposed in the stationary base and electrically connected to the transmitting circuit. The second induction coil is disposed in the rotating base and electrically connected to the receiving circuit.