摘要:
Apparatus and methods for synchronizing a network element (e.g. access points, femtocells, etc.) to a master network (such as a cellular network) to provide accurate frequency and/or time references for their internal systems. In one embodiment, the network element utilizes a dedicated receiver (or transceiver) to receive timing information from the master network. The implementation of the dedicated receiver is advantageous for cost and simplicity reasons. Furthermore, the timing or frequency information, as received from the master network, is used to correct the network element's internal timing. In addition, the network element's internal timing can operate in open-loop mode, if no master network can be found, thereby allowing for the device to continue providing service to network users. Additionally, a dedicated receiver can also receive information (e.g. location, SID, NID, SSID, etc.) local to the network element, such information may be useful or required for seamless operation within the master network.
摘要:
Base stations with coordinated multiple air-interface operations are provided. In some embodiments, multi-mode base station (BTS) systems operate with different air-interfaces, functionality, or configurations in a coordinated manner. For example, typical applications of such systems can include Macrocell BTS, Picocell BTS, Femtocell BTS, or Access Point (AP), Set Top Box (STB), or Home Gateway, Hot Spot Devices, User Terminal with the capability to perform required base station operations. In some embodiments, various techniques are provided for system improvements and optimizations via radio resource management, including user and system throughput optimization, QoS improvement, interference management, and various other improvements and optimizations. In some embodiments, a system (e.g., a multi-mode device, such as a base station, a repeater, and/or a terminal) includes a multi-mode communication unit, in which the multi-mode communication unit allocates access for communication using at least two modes; and a processor configured to implement at least in part the multi-mode communications unit. In some embodiments, the at least two modes include one or more of the following: frequency band, protocol standard, duplexing format, broadcast mode (e.g., television broadcast and/or a radio broadcast), and one-way communication mode.
摘要:
A self-organizing wireless network (SON) includes a plurality of base stations. Each base station includes a SON component for coordinating radio resource allocation with other base stations and a radio resource management component for accepting an allocation from the SON component and managing usage of that allocation for end user equipment associated with its base station. The base stations provide access to a plurality of end user equipment. The SON may include a server for communicating with the SON component for coordinating of radio resource allocation. The self-organizing wireless network may include a central control for communicating with the SON component for coordinating of radio resource allocation. Coordinating of radio resources relates to physical channels, transmit power, spatial resource allocation, admission control, load balancing, coordinating network elements in groups and includes adapting to addition of and reduction of network elements in a group in real time.
摘要:
Self-Organized Network (SON) architectures for heterogeneous networks are disclosed. In some embodiments, various SON architectures for heterogeneous networks are provided that can evolve with such networks while the core functional modules of the SON solution can remain the same. In some embodiments, techniques for implementing SON architectures for heterogeneous networks includes providing a base station that includes performing a pre-operation self-configuration; and performing an operation self-optimization.
摘要:
Power savings and interference reduction for multimode devices (e.g., base stations and relay nodes) is disclosed. In some embodiments, power savings and interference reduction for multimode devices includes selecting a power state of the multimode device selected from a plurality of power states, in which the multimode device is in a first power state (e.g., an active or serving power state), and in which the selected power state is a second power state (e.g., a reduced power state), and transitioning the multimode device from the first power state to the second power state.
摘要:
Various techniques are disclosed for wireless communications for providing a methodology and algorithm(s) to manage resources and schedule users in a coordinated way among a group of base stations, such as Femtocells, Picocells, self-organized Basestations, Access Points (APs) or mesh network nodes, or among the basestations in a two tiered networks, to improve the performance for individual user, individual Basestation (BTS), the overall systems or all of above.
摘要:
Systems and methods for implementing and designing protocols in such communications systems which can be wireless or wired. The systems and methods can include fundamental changes in the traditional protocol design approaches with their constraints of one-to-one mapping in protocols. By doing so, embodiments of the present invention enable an efficient way to design and implement a system to support single or multiple protocols.
摘要:
Systems, apparatus, and methods for controlling cell activation state. Cellular service providers (CSPs) experience fluctuating levels of demand throughout the day and across different segments (business, consumers). While CSPs can augment their cellular coverage carriers with additional capacity carriers, doing so comes with increased energy and cost. Ideally, CSPs would like to dynamically adapt capacity to accommodate the service demand. Various embodiments of the present disclosure enable an energy savings rApp (non-real-time remote application) that leverages AI base learning and RAN programmability to predict increased traffic. By enabling RAN pre-emptively, the cellular network can ensure user quality of service (QOS) while still minimizing energy consumption.
摘要:
Various techniques are disclosed for wireless communications for providing a methodology and algorithm(s) to manage resources and schedule users in a coordinated way among a group of base stations, such as Femtocells, Picocells, self-organized Basestations, Access Points (APs) or mesh network nodes, or among the basestations in a two tiered networks, to improve the performance for individual user, individual Basestation (BTS), the overall systems or all of above.
摘要:
Techniques for data offload using various distributed network architectures are disclosed. In some embodiments, wireless communications, specifically, system architectures and their implementation of distributed network architectures that can be used to effectively offload the data from the centralized cellular core networks are disclosed. For example, techniques for data offload using a distributed network architecture can be applied to heterogeneous networks (HetNet) that can include macrocells, picocells, femtocells, remote radio heads, and/or access points, and in one or more layers. These techniques can also be applied within so-called cloud-Radio Access Networks (cloud-RAN) networks.