摘要:
A co-firing process is described using cleaned coal and processed biomass to reduce adverse by-products in a coal combusting apparatus. The coal feedstock comprises an aggregate blend of cleaned coal and processed biomass. The biomass feedstock comprises processed biomass pellets. The total energy density is predetermined and can be similar to the coal component or higher than the coal component. The intracellular salt in the processed biomass is at least 60 wt % less for the processed organic-carbon-containing feedstock used to make the processed biomass pellets than that of the starting un-processed processed organic-carbon-containing feedstock. The cleaned coal has a sulfur content that is 50 wt % less than that of un-cleaned coal before it passed through the coal-cleaning sub-system.
摘要:
A low energy processed biomass/coal blended compact aggregate composition made with a blending sub-system from a processed organic-carbon-containing feedstock made with a beneficiation sub-system and low energy coal is described. Renewable biomass feedstock passed through a beneficiation sub-system to reduce water content to below at least 20 wt % and an intracellular water-soluble salt reduction of at least 60% from that of unprocessed organic-carbon-containing feedstock on a dry basis. The processed feedstock is blended with sized low energy coal in a blending sub-system to form a blended aggregate that comprises at least 10 wt % of a coal having an energy density of less than 21 MMBTU/ton (24 GJ/MT) and at least 10 wt % of a processed biomass comprising a processed organic-carbon-containing feedstock with characteristics that include an energy density of at least 17 MMBTU/ton (20 GJ/MT) and a water-soluble intracellular salt content that is decreased more than 60 wt % on a dry basis for the processed organic-carbon-containing feedstock from that of unprocessed organic-carbon-containing feedstock.
摘要:
A coal combustion process is described using coal and processed biomass to reduce adverse by-products in a coal combusting apparatus including the reduction of carbon dioxide by at least 50 volume %. The coal feedstock is selected from coal, a coal substitute processed biomass, or an aggregate blend of coal and processed biomass. The biomass feedstock comprises processed biomass pellets. The total energy density is predetermined and can be similar to the coal component or higher than the coal component. The intracellular salt in the processed biomass is at least 60 wt % less for the processed organic-carbon-containing feedstock used to make the processed biomass pellets than that of the starting un-processed processed organic-carbon-containing feedstock.
摘要:
Systems and methods for producing processed organic-carbon-containing feedstock from an unprocessed carbon-containing feedstock are described. Unprocessed feedstock is introduced into and transported through at least one reaction chamber. The reaction chamber is configured for each feedstock to produce processed feedstock having a water-soluble intracellular salt reduction of at least 50 percent from that of unprocessed organic-carbon-containing feedstock and a water content of less than 40 percent.
摘要:
A co-firing process is described using coal and processed biomass to reduce adverse by-products in a coal combusting apparatus. The coal feedstock is selected from coal, a coal substitute processed biomass, or an aggregate blend of coal and processed biomass. The biomass feedstock comprises processed biomass pellets. The total energy density is predetermined and can be similar to the coal component or higher than the coal component. The intracellular salt in the processed biomass is at least 60 wt % less for the processed organic-carbon-containing feedstock used to make the processed biomass pellets than that of the starting un-processed processed organic-carbon-containing feedstock.
摘要:
A co-firing process is described using cleaned coal and processed biomass to reduce adverse by-products in a coal combusting apparatus. The coal feedstock comprises an aggregate blend of cleaned coal and processed biomass. The biomass feedstock comprises processed biomass pellets. The total energy density is predetermined and can be similar to the coal component or higher than the coal component. The intracellular salt in the processed biomass is at least 60 wt % less for the processed organic-carbon-containing feedstock used to make the processed biomass pellets than that of the starting un-processed processed organic-carbon-containing feedstock. The cleaned coal has a sulfur content that is 50 wt % less than that of un-cleaned coal before it passed through the coal-cleaning sub-system.
摘要:
A processed biomass/coal blended compact aggregate composition made with a blending sub-system from a processed organic-carbon-containing feedstock made with a beneficiation sub-system and low energy coal is described. Renewable biomass feedstock passed through a beneficiation sub-system to produce a processed biomass with an energy density of at least 17 MMBTU/ton (19 GJ/MT), a water content of below at least 20 wt % and an intracellular water-soluble salt that is at least 60% below that of unprocessed organic-carbon-containing feedstock on a dry basis. Low energy un-cleaned coal is sized and passed through a coal cleaning sub-system to result in cleaned low energy coal having an energy density of less than 21 MMBTU/ton (24 GJ/MT) and a content of sulfur that is at least 50 wt % below that of the content of sulfur in the coal before it passed through the coal cleaning sub-system. The processed feedstock is sized and blended with the cleaned low energy coal in a blending sub-system to form a blended aggregate that comprises at least 10 wt % of the cleaned low energy coal and at least 10 wt % of the processed biomass.
摘要:
A processed pyrolysis oil composition, a renewable liquid fuel, having a high energy density, low water content and a more neutral pH, and made with an oxygen-starved microwave sub-system from a processed organic-carbon-containing feedstock made with a beneficiation sub-system is described. Renewable biomass feedstock passed through a beneficiation sub-system to reduce water content to below at least 20 wt % and water-soluble salt reduction of at least 60% from that of unprocessed organic-carbon-containing feedstock on a dry basis. The processed feedstock is introduced into a substantially microwave-transparent reaction chamber. A microwave source emits microwaves which are directed through the microwave-transparent wall of the reaction chamber to impinge on the feedstock within the reaction chamber. The microwave source may be rotated relative to the reaction chamber. The feedstock is subjected to microwaves until the desired reaction occurs to produce a liquid processed pyrolysis oil fuel.
摘要:
A renewable processed biomass pellet composition made with a pelletizing sub-system from a processed organic-carbon-containing feedstock made with a beneficiation sub-system is described. Renewable biomass feedstock passed through a beneficiation sub-system to reduce water content to below at least 20 wt % and water-soluble intracellular salt reduction of at least 60% from that of unprocessed organic-carbon-containing feedstock on a dry basis. The processed feedstock is introduced into a pelletizing sub-system to result in renewable processed biomass pellets having an energy density of at least 17 MMBTU/ton (20 GJ/MT) a water content of less than 20 wt %, and water-soluble intracellular salt content that is decreased by at least 60 wt % on a dry basis for the processed organic-carbon-containing feedstock from that of the unprocessed organic-carbon-containing feedstock, and made with 40% less energy than expended to make current biomass pellets.
摘要:
Systems and methods for producing processed organic-carbon-containing feedstock from an unprocessed carbon-containing feedstock are described. Unprocessed feedstock is introduced into and transported through at least one reaction chamber. The reaction chamber is configured for each feedstock to produce processed feedstock having a water-soluble salt reduction of at least 60 percent from that of unprocessed organic-carbon-containing feedstock and a water content of less than 20 percent.