Abstract:
A hybrid feeding device for automatically adjusting a co-firing amount of decaying garbage. The device comprises a mechanical grate furnace, a hybrid garbage conveying device, a raw garbage feeding device, a decaying garbage feeding device, a hybrid garbage crushing device, and a control center. The raw garbage feeding device, the decaying garbage feeding device, and the hybrid garbage conveying device are all connected to the control center. The decaying garbage feeding device is used for transporting decaying garbage to the raw garbage feeding device. The raw garbage feeding device is positioned between the decaying garbage feeding device and the hybrid garbage conveying device. The hybrid garbage crushing device is used for crushing garbage and inputting the garbage to the mechanical grate furnace. The mechanical grate furnace is internally provided with a plurality of temperature sensors, and the plurality of temperature sensors are connected to the control center.
Abstract:
A method controls mass and heat loading of sludge feed into a fluidized bed combustor (FBC) controlled via regulation of a polymer dosage or a sludge feed rate including: continuously monitoring at least one performance characteristic of the FBC; producing an input signal characteristic; analyzing the input signal and determining a first rate of change of the characteristic; generating an output signal based on the first rate of change to control addition of polymer to the FBC; generating a second output signal to control addition of sludge feed to the FBC; and determining a transition point between the addition of polymer and addition of sludge, which transition point is an upper limit of a first rate change to maintain flow so that the value of the characteristic is maintained proximate at the upper limit.
Abstract:
The method according to an example of the invention relates to a method for processing and also recycling sludge which has precipitated from waste in a sediment tank within the scope of the high temperature treatment. This is dried and mixed with preportioned solid plastic materials so that solid conglomerates are formed and returned then to the high temperature treatment of the waste.
Abstract:
Solid combustible waste materials are converted into highly efficient fuel by subjecting such materials to size reduction in suitable size-reducing equipment. The last piece of the equipment is a mill which pulverizes the waste materials into fine particles having a high surface to mass ratio and forming a highly efficient fuel when these particles are directly injected into a combustion reactor operating at high temperature.
Abstract:
A method of incinerating sludge in a combustor is disclosed including establishing at least one target performance characteristic of the combustor; introducing the sludge into the combustor as primary fuel; monitoring at least one performance parameter of the combustor; calculating an actual performance characteristic based on the performance parameter; and adjusting the quantity and/or quality of fuel introduced into the combustor in response to a monitored performance characteristic to substantially maintain the target performance characteristic. The apparatus for incinerating sludge includes a combustor adapted to receive sludge as fuel and incinerate the sludge; a sensor that monitors at least one performance parameter of the combustor; and a controller connected to the combustor and the sensor that 1) establishes at least one target performance characteristic of the combustor, 2) calculates an actual performance characteristic based on the performance parameter and 3) adjusts quantity and/or quality of fuel introduced into the combustor in response to a monitored performance characteristic to substantially maintain the target performance characteristic.
Abstract:
A method of using high temperature plasma to disintegrate waste containing titanyl phthalocyanine (TiOPc) comprises heating a mixture of titanyl phthalocyanine (TiOPc), a vitrifying material and selected waste soil to a temperature of 1,220° C. to 10,000° C. until the mixture becomes molten lava. The plasma breaks down the titanyl phthalocyanine and encapsulates the benign products in the lava that is chemically very stable. Since the titanyl phthalocyanine (TiOPc) is disintegrated completely in the process, the titanyl phthalocyanine (TiOPc) no longer represents a threat to the environmental.
Abstract:
Presented is a method and apparatus for converting both organic and inorganic materials into more desirable products by the expedient of breaking down these materials into their stable molecular constituents and reforming them into more desirable substances. The process involves the use of two chambers. Blended solid and fluid wastes are augered into the first chamber and agitated, preferably by rotating the chamber so that the waste tumbles over internal fins, while a heat gradient is applied. Carbon and inorganic solid wastes are removed from the system and fluid wastes passed to a second chamber where they are again subjected to a heat gradient. Effluents are recovered and condensed. Electromagnetic radiation, preferably from microwaves, and/or lasers, masers or ultrasonic energy is applied to the wastes in both chambers. Liberal use of catalysts is made in the chambers. In addition, the augering system is based on the use of two, counter-rotating, inter-lapped, symmetric augers for positive feed of materials.
Abstract:
Process and plant for producing a refuse derived solid fuel (RDSF), including a first component having a dry fraction of a solid urban waste (MSW) in a shredded form and at least one second component in a shredded form selected from an elastomeric material and a thermoplastic material, or mixtures thereof, wherein the dry fraction of the MSW, the elastomeric polymer material and/or the thermoplastic polymer material are stored in separate containers and when required are metered and fed in subsequent layers onto a continuous conveyor which discharges into a temporary accumulating container, for example, the box body of a motor vehicle, intended to directly feed the combustion plant wherein the RDSF is burned. In this way, there is no need to premix the various fractions of the RDSF during the production stage and to maintain the resulting mixture constantly stirred in order to prevent compaction and/or separation of fractions. In fact, mixing between the various fractions only takes place at the end of the production process when the RDSF is placed in the temporary accumulation container which feeds the combustion plant.
Abstract:
Disclosed are a method and an installation for generating effective energy by gasifying waste. In the method and installation, waste such as garbage is introduced into a shaft-type melting gasifier, is dried in a reverse flow, is degassed, and is gasified while the solid residue is melted. The hot crude gases that are withdrawn from the melting gasifier (15) are fed to a hot gas steam generator (18) in which steam is admixed to the hot gas and the hot gas-steam mixture is conducted across the double turbine rotor (18.13) of a turbine (18.3) that drives a power generator (18.4), a preliminary reaction taking place at the same time. The pre-purified hot gas-steam mixture is then introduced into a downflow device (38) in which the mixture is cooled and pre-purified using sprayed water mixed with reactant and by repeatedly expanding, compressing, and foaming the mixture, the pre-purified gas being withdrawn and the liquid being collected. The pre-purified gas is fed to a gas purification process (40) in which the pre-purified gas is foamed with reactant and is defoamed again. The purified gases are finally further utilized for generating power, e.g. by being burned in an engine (41).
Abstract:
A reduction treatment apparatus can include a reduction furnace configured to reduce zinc and/or iron oxide thorough heat treatment of zinc-containing iron oxide or zinc oxide or iron oxide, with a reducing material. The reduction treatment apparatus also has an oxide inlet configured to supply to the reduction furnace the zinc-containing iron oxide or zinc oxide or iron oxide. The reduction treatment apparatus further has a reducing material inlet configured to supply to the reduction furnace the reducing material. The reducing material can comprise at least one of ASR, shredder dust of home electric appliances, waste plastics, PDF, RPF, sludge, oil mud, chips of wood, thread debris, rubber debris, and animal and plant residues. The reduction furnace can be configured to use the reducing material as a heating material and reduce the zinc-containing iron oxide or zinc-oxide or iron oxide without auxiliary fuel.